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UNIT I 

 
 
OUTLINE 

 

Introduction to Compilers:  

 Compilers and Translators  

 Lexical analysis  

 Syntax analysis  

 Intermediate code generation  

 Optimization  

 Code generation   

 Bookkeeping  

 Error handling  

 Compiler writing tools. 

 

Finite Automata and Lexical Analysis:  

 The role of the lexical analyzer 

 The design of the lexical analyzers 

 Regular expressions 

 Finite automata 

 From regular expressions to finite automata 

 Minimizing the number of states of a DFA 

 A language for specifying lexical analyzers  

 Implementation of a lexical analyzer. 

 

 

 

 

 



 

 

INTRODUCTION TO COMPILERS: 

 

 A compiler is a translator that converts the high-level language into the 

machine language. 

 Compiler is used to show errors to the programmer. 

 The main purpose of compiler is to change the code written in one 

language without changing the meaning of the program. 

 In the first part, the source program compiled and translated into the 

object program (low level language). 

 In the second part, object program translated into the target program 

through the assembler.  

COMPILERS AND TRANSLATORS  

COMPILER 

 Compiler is a translator which is used to convert programs in high-level 

language to low-level language. It translates the entire program and also 

reports the errors in source program encountered during the translation. 

 

                

 

 

 



TRANSLATOR 

 A program written in high-level language is called as source code. To 

convert the source code into machine code, translators are needed. 

 A translator takes a program written in source language as input and 

converts it into a program in target language as output. 

 It also detects and reports the error during translation. 

ROLES OF TRANSLATOR ARE: 

 Translating the high-level language program input into an 

equivalent machine language program. 

 Providing diagnostic messages wherever the programmer 

violates specification of the high-level language program. 

 

LEXICAL ANALYSIS  

 Lexical analysis is the process of converting a sequence of characters 

from source program into a sequence of tokens. 

 A program which performs lexical analysis is termed as a lexical 

analyzer (lexer), tokenizer or scanner. 

 Lexical analysis consists of two stages of processing which are as 

follows: 

  • Scanning 

  • Tokenization 

Token, Pattern and Lexeme 

Token is a valid sequence of characters which are given by lexeme. In a 

programming language, 



• keywords, 

• constant, 

• identifiers, 

• numbers, 

• operators and 

• punctuations symbols 

are possible tokens to be identified. 

Pattern 

 Pattern describes a rule that must be matched by sequence of 

characters (lexemes) to form a token.  

 It can be defined by regular expressions or grammar rules. 

Lexeme 

 Lexeme is a sequence of characters that matches the pattern for a token 

i.e., instance of a 

token. 

(eg.) c=a+b*5; 

Need of Lexical Analyzer 

 Simplicity of design of compiler The removal of white spaces and 

comments enables the syntax analyzer for efficient syntactic 

constructs. 

 Compiler efficiency is improved Specialized buffering techniques for 

reading characters speed up the compiler process. 

 Compiler portability is enhanced 



 

 SYNTAX ANALYSIS  

 The parser has two functions. 

 It checks that the tokens appearing in the input, which is the output of 

the lexical analyzer. 

 It also imposes the token that is used by the subsequent phases of 

compiler. 

For example, if a program PL/I program contains the expression 

  A+/B 

Then after lexical analysis this expression appear to the system as the 

token sequence 

  id+/id 

On seeing the /, the syntax analyzer should detect an error situation. 

 The second aspect of syntax analysis is to make explicit the 

hierarchical structure. 

 

For example, the expression 

 A/B*C 

It has two possible interpretations. 

1. Divide A by B and then multiply by C 

2. Multiply B by C and then use the result to divide A. 

 

 INTERMEDIATE CODE GENERATION  

Intermediate codes can be represented in a variety of ways and they have 

their own benefits. 

 High Level IR - High-level intermediate code representation is very 

close to the source language itself. They can be easily generated from 

the source code and we can easily apply code modifications to enhance 

performance. But for target machine optimization, it is less preferred. 



 Low Level IR - This one is close to the target machine, which makes it 

suitable for register and memory allocation, instruction set selection, 

etc. It is good for machine-dependent optimizations. 

Intermediate code can be either language specific (e.g., Byte Code for Java) or 

language independent (three-address code). 

Three-Address Code 

 Intermediate code generator receives input from its predecessor phase, 

semantic analyzer, in the form of an annotated syntax tree. That syntax tree 

then can be converted into a linear representation. 

 Code generator assumes to have unlimited number of memory storage 

(register) to generate code. 

For example: 

a = b + c * d; 

The intermediate code generator will try to divide this expression into sub-

expressions and then generate the corresponding code. 

r1 = c * d; 

r2 = b + r1; 

a = r2 

 A three-address code has at most three address locations to calculate 

the expression. A three-address code can be represented in two forms: 

quadruples and triples. 

OPTIMIZATION  

 Optimization of the code is often performed at the end of the 

development stage since it reduces readability and adds code that is used to 

increase the performance. 

 Optimization helps to: 



 Reduce the space consumed and increases the speed of compilation. 

 Manually analyzing datasets involves a lot of time. Hence we make use of 

software like Tableau for data analysis. Similarly manually performing 

the optimization is also tedious and is better done using a code 

optimizer. 

 An optimized code often promotes re-usability. 

Types of Code Optimization –The optimization process can be broadly 

classified into two types: 

1. Machine Independent Optimization – This code optimization phase 

attempts to improve the intermediate code to get a better target code 

as the output. The part of the intermediate code which is transformed 

here does not involve any CPU registers or absolute memory locations. 

2. Machine Dependent Optimization – Machine-dependent optimization 

is done after the target code has been generated and when the code is 

transformed according to the target machine architecture. It involves 

CPU registers and may have absolute memory references rather than 

relative references. Machine-dependent optimizers put efforts to take 

maximum advantage of the memory hierarchy. 

Phases of Optimization 

There are generally two phases of optimization: 

 Global Optimization: 

Transformations are applied to large program segments that includes 

functions, procedures and loops. 

 Local Optimization: 

Transformations are applied to small blocks of statements. The local 

optimization is done prior to global optimization. 

 

CODE GENERATION   



 Code generator is used to produce the target code for three-address 

statements. It uses registers to store the operands of the three address 

statement. 

Example: 

Consider the three address statement x: = y + z. It can have the following 

sequence of codes: 

 MOV x, R0 

         ADD y, R0 

Register and Address Descriptors: 

o A register descriptor contains the track of what is currently in each 

register. The register descriptors show that all the registers are initially 

empty. 

o An address descriptor is used to store the location where current value 

of the name can be found at run time. 

A code-generation algorithm: 

The algorithm takes a sequence of three-address statements as input. For each 

three address statement of the form a:= b op c perform the various actions. 

These are as follows: 

1. Invoke a function getreg to find out the location L where the result of 

computation b op c should be stored. 

2. Consult the address description for y to determine y'. If the value of y 

currently in memory and register both then prefer the register y’. If the 

value of y is not already in L then generate the instruction MOV y’, L to 

place a copy of y in L. 



3. Generate the instruction OP z’, L where z' is used to show the current 

location of z. if z is in both then prefer a register to a memory location. 

Update the address descriptor of x to indicate that x is in location L. If x 

is in L then update its descriptor and remove x from all other descriptor. 

4. If the current value of y or z have no next uses or not live on exit from 

the block or in register then alter the register descriptor to indicate that 

after execution of x : = y op z those register will no longer contain y or z. 

Generating Code for Assignment Statements: 

The assignment statement d: = (a-b) + (a-c) + (a-c) can be translated into the 

following sequence of three address code: 

1. t:= a-b   

2. u:= a-c   

3. v:= t +u    

4. d:= v+u   

Code sequence for the example is as follows: 

 

 

 

BOOKKEEPING  

 

 A compiler needs to collect information about all the data objects that 

appear in the source program.  



 The information about data objects is collected by the early phases of 

the compiler-lexical and syntactic analyzers.  

 The data structure used to record this information is called as Symbol 

Table. 

 

ERROR HANDLING  

 One of the most important functions of a compiler is the detection and 

reporting of errors in the source program.  

 The error message should allow the programmer to determine exactly 

where the errors have occurred.  

 Errors may occur in all or the phases of a compiler.  

 Whenever a phase of the compiler discovers an error, it must report the 

error to the error handler, which issues an appropriate diagnostic msg.  

 Both of the table-management and error-Handling routines interact 

with all phases of the compiler. 

 

 

   



   

      

COMPILER WRITING TOOLS 

Some commonly used compiler-construction tools. It include, 

1. Parser generators. (e.g. yacc • Code generator generators) 

2. Scanner generators. (e.g. lex – The input to lex consists of a definition of 

each token as a regular expression) 

3. Syntax-directed translation engines. 

4. Automatic code generators. 

5. Data-flow analysis engines. 

6. Compiler-construction toolkits 



 FINITE AUTOMATA AND LEXICAL ANALYSIS:  

Finite Automata 

 Finite Automata(FA) is the simplest machine to recognize patterns. 

 The finite automata or finite state machine is abstract machines which 

have five elements or tuple. 

 It has a set of states and rules for moving from one state to another but it 

depends upon the applied input symbol. 

 Basically it is an abstract model of digital computer.  

Following figure shows some essential features of a general automation. 

 
 

The above figure shows following features of automata: 

1. Input 

2. Output 

3. States of automata 

4. State relation 

5. Output relation 

Lexical Analysis 

 Lexical Analysis is the first phase of the compiler also known as a 

scanner. It converts the High level input program into a sequence of Tokens. 



 Lexical Analysis can be implemented with the Deterministic finite 

Automata. 

 The output is a sequence of tokens that is sent to the parser for syntax 

analysis 

 

THE ROLE OF THE LEXICAL ANALYZER 

Role of Lexical Analyzer 

 Role of Lexical Analyzer, the LA is the first phase of a compiler. It main 

task is to read the input character and produce as output a sequence of tokens 

that the parser uses for syntax analysis. 

  
 Upon receiving a ‘get next token’ command form the parser, the lexical 

analyzer reads the input character until it can identify the next token.  

 The LA return to the parser representation for the token it has found. 

 The representation will be an integer code, if the token is a simple 

construct such as parenthesis, comma or colon.  

 LA may also perform certain secondary tasks as the user interface.  

 One such task is striping out from the source program the commands 

and white spaces in the form of blank, tab and new line characters.  

 Another is correlating error message from the compiler with the source 

program. 

 Input Buffering 

 The LA scans the characters of the source pgm one at a time to discover 

tokens.  



 Because of large amount of time can be consumed scanning characters, 

specialized buffering techniques have been developed to reduce the 

amount of overhead required to process an input character. 

 

 THE DESIGN OF THE LEXICAL ANALYZERS 

There are two ways for designing a lexical analyzer, they are 

         1.  Hand coding 

        2.  Lexical analyzer generator 

Hand Coding:  

Programmer has to perform the following task Specify the tokens by writing 

regular expressions. 

          1. Construct Finite Automata equivalent to a regular expression 

         2.  Recognize the tokens by constructed Finite Automata 

two steps are done by lexical analyzer generator automatically. 

Lexical Analyzer Generator 

 Lexical Analyzer Generator introduce a tool called Lex, which allows one 

to specify a lexical analyzer by specifying regular expressions to 

describe pattern for tokens. 

 The input for the lex tool is lex language. 

 A program which is written in lex language will compile through lex 

compiler and produce a C Code called lex.yy.c always i.e, 

 

 

Now, C code is compiled by C compiler and produce a file called a.out as 

always i.e., 



 

 The C compiler output is a working lexical analyzer that can take a 

stream of input character and produce a stream of tokens i.e., 

 

 

 

 REGULAR EXPRESSIONS 

Regular expression is a formula that describes a possible set of string.  

Component of regular expression 

 X   the character x 

  .   any character, usually accept a new line 

  [x y z]  any of the characters x, y, z, ….. 

  R?  a R or nothing (=optionally as R)  

 R*   zero or more occurrences…..  



 R+   one or more occurrences ……  

 R1R2  an R1 followed by an R2  

 R2R1  either an R1 or an R2.  

 A token is either a single string or one of a collection of strings of a certain 

type. 

 If we view the set of strings in each token class as an language, we can use 

the regular expression notation to describe tokens.  

 Consider an identifier, which is defined to be a letter followed by zero or 

more letters or digits. 

 In regular expression notation we would write.  

  Identifier = letter (letter | digit)*  

Here are the rules that define the regular expression over alphabet. 

 is a regular expression denoting { € }, that is, the language containing 

only the empty string.  

 For each ‘a’ in ∑, is a regular expression denoting { a }, the language with 

only one string consisting of the single symbol ‘a’ .  

 If R and S are regular expressions, then 

  (R) | (S) means LrULs  

 R.S means Lr. Ls 

  R* denotes Lr* 

 

FINITE AUTOMATA 

Automation is defined as a system where information is transmitted and used 

for performing some functions without direct participation of man. 

  1, an automation in which the output depends only on the input is called 

automation without memory.  

 2, an automation in which the output depends on the input and state also 

is called as automation with memory. 

  3, an automation in which the output depends only on the state of the 

machine is called a Moore machine.  



  4. an automation in which the output depends on the state and input at 

any instant of time is called a mealy machine. 

Description of Automata  

 1, an automata has a mechanism to read input from input tape,  

 2, any language is recognized by some automation, Hence these 

automation are basically language ‘acceptors’ or ‘language recognizers’.  

Types of Finite Automata  

 • Deterministic Automata  

 • Non-Deterministic Automata 

 

FROM REGULAR EXPRESSIONS TO FINITE AUTOMATA 

We can convert them to finite automata. 

 Even number of a’s : The regular expression for even number of a’s 

is (b|ab*ab*)*. We can construct a finite automata as shown in Figure 1. 

 

The above automata will accept all strings which have even number of a’s. 

For zero a’s, it will be in q0 which is final state. For one ‘a’, it will go from 

q0 to q1 and the string will not be accepted. For two a’s at any positions, it 

will go from q0 to q1 for 1st ‘a’ and q1 to q0 for second ‘a’. So, it will accept 

all strings with even number of a’s. 

 String with ‘ab’ as substring: The regular expression for strings with 

‘ab’ as substring is (a|b)*ab(a|b)*. We can construct finite automata as 

shown in Figure 2. 

  



 

 

The above automata will accept all string which have ‘ab’ as substring. The 

automata will remain in initial state q0 for b’s. It will move to q1 after 

reading ‘a’ and remain in same state for all ‘a’ afterwards. Then it will 

move to q2 if ‘b’ is read. That means, the string has read ‘ab’ as substring if 

it reaches q2. 

 String with count of ‘a’ divisible by 3: The regular expression for 

strings with count of a divisible by 3 is {a3n | n >= 0}. We can construct 

automata as shown in Figure 3. 

   

 The above automata will accept all string of form a3n. The automata will 

remain in initial state q0 for ɛ and it will be accepted. For string ‘aaa’, it will 

move from q0 to q1 then q1 to q2 and then q2 to q0. For every set of three a’s, it 

will come to q0, hence accepted. Otherwise, it will be in q1 or q2, hence 

rejected. 

Note: If we want to design a finite automata with number of a’s as 3n+1, same 

automata can be used with final state as q1 instead of q0. 

 

 
 

 

 

https://media.geeksforgeeks.org/wp-content/uploads/automatafigure3.jpg
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 MINIMIZING THE NUMBER OF STATES OF A DFA 

Minimization of DFA means reducing the number of states from given FA. 

Thus, we get the FSM (finite state machine) with redundant states after 

minimizing the FSM. 

We have to follow the various steps to minimize the DFA. These are as follows: 

Step 1: Remove all the states that are unreachable from the initial state via 

any set of the transition of DFA. 

Step 2: Draw the transition table for all pair of states. 

Step 3: Now split the transition table into two tables T1 and T2. T1 contains 

all final states, and T2 contains non-final states. 

Step 4: Find similar rows from T1 such that: 

 1. δ (q, a) = p   

 2. δ (r, a) = p   

That means, find the two states which have the same value of a and b and 

remove one of them. 

Step 5: Repeat step 3 until we find no similar rows available in the transition 

table T1. 

Step 6: Repeat step 3 and step 4 for table T2 also. 

Step 7: Now combine the reduced T1 and T2 tables. The combined transition 

table is the transition table of minimized DFA. 

 



Example: 

 

 

Solution: 

Step 1: In the given DFA, q2 and q4 are the unreachable states so remove 

them. 

Step 2: Draw the transition table for the rest of the states. 

 

Step 3: Now divide rows of transition table into two sets as: 

1. One set contains those rows, which start from non-final states: 

 

 



2. Another set contains those rows, which starts from final states. 

 

Step 4: Set 1 has no similar rows so set 1 will be the same. 

Step 5: In set 2, row 1 and row 2 are similar since q3 and q5 transit to the 

same state on 0 and 1. So skip q5 and then replace q5 by q3 in the rest. 

 

Step 6: Now combine set 1 and set 2 as: 

 

Now it is the transition table of minimized DFA. 

 



A LANGUAGE FOR SPECIFYING LEXICAL ANALYZERS  

There is a wide range of tools for constructing lexical analyzers. 

 Lex 

 YACC 

  

Lex is a computer program that generates lexical analyzers. Lex is commonly 

used with the yacc parser generator. 

Creating a lexical analyzer 

  

•    First, a specification of a lexical analyzer is prepared by creating a program 

lex.l in the Lex language. Then, lex.l is run through the Lex compiler to 

produce a C program lex.yy.c. 

  

•    Finally, lex.yy.c is run through the C compiler to produce an object progra 

m a.out, which is the lexical analyzer that transforms an input stream into a 

sequence of tokens. 

 

  

 

 

 



Lex Specification 

A Lex program consists of three parts: 

{ definitions } 

%% 

{ rules } 

%% 

{ user subroutines } 

Definitions include declarations of variables, constants, and regular 

definitions 

  

Ø    Rules are statements of the form 

p1 {action1} 

p2 {action2} 

… 

pn {actionn} 

 where pi is regular expression and actioni describes what action the 

lexical analyzer should take 

 when pattern pi matches a lexeme. Actions are written in C code. 

  

User subroutinesseparately and loaded with the lexical analyzer.are 

auxiliary procedures needed by the actions. These can be compiled 

  

YACC- YET ANOTHER COMPILER-COMPILER 

 Yacc provides a general tool for describing the input to a computer 

program.  

 The Yacc user specifies the structures of his input, together with code to 

be invoked as each such structure is recognized. 



 Yacc turns such a specification into a subroutine that handles the input 

process; frequently, it is convenient and appropriate to have most of the 

flow of control in the user's application handled by this subroutine. 

 

IMPLEMENTATION OF A LEXICAL ANALYZER 

Notation 

 • For convenience, we use a variation (allow userdefined abbreviations) 

in regular expression notation  

• Union:  A + B ≡ A | B  

• Option: A + ε ≡ A?  

• Range: ‘a’+’b’+…+’z’ ≡ [a-z]  

• Excluded range: complement of [a-z] ≡ [^a-z] 

Regular Expressions in Lexical Specification  

• Last lecture: a specification for the predicate s ∈ L(R) 

 • But a yes/no answer is not enough! 

 • Instead: partition the input into tokens  

• We will adapt regular expressions to this goal 

Regular Expressions ⇒ Lexical Spec. (1) 

1. Select a set of tokens • Integer, Keyword, Identifier, Open Par, ...  

2. Write a regular expression (pattern) for the lexemes of each token  

 • Integer = digit +  

 • Keyword = ‘if’ + ‘else’ + …  

 • Identifier = letter (letter + digit)* 

  • OpenPar = ‘(‘ 



  • … 

Regular Expressions ⇒ Lexical Spec. (2)  

3. Construct R, matching all lexemes for all tokens 

  R = Keyword + Identifier + Integer + … 

  = R1 + R2 + R3 + …  

Facts: If s ∈ L(R) then s is a lexeme  

 – Furthermore s ∈ L(Ri) for some “i” 

  – This “i” determines the token that is reported 

Regular Expressions ⇒ Lexical Spec. (3) 

 4. Let input be x1…xn  

 • (x1 ... xn are characters) 

  • For 1 ≤ i ≤ n check x1…xi ∈ L(R) ?  

5. It must be that x1…xi ∈ L(Rj) for some j (if there is a choice, pick a smallest 

such j) 

 6. Remove x1…xi from input and go to previous step 

 

 



 

UNIT II 

CHAPTER 4: The Syntactic Specification Of Programming Language 

 Context Free Grammars 

 Derivations And Parse Trees 

 Capabilities Of Context Free Grammar 

CHAPTER 5: Basic Parsing Techniques 

 Parsers  

 Shift reduce parsing 

 Operator precedence parsing 

 Top down parsing 

 Predictive parsers 

CHAPTER 6: Automatic construction of effective parsers 

 LR Parsers  

 Constructing  SLR parsing tables 

 Constructing  LALR parsing tables  

 

Context-Free Grammar 

In this section, we will first see the definition of context-free grammar and introduce terminologies used 

in parsing technology. 

A context-free grammar has four components: 

 A set of non-terminals (V). Non-terminals are syntactic variables that denote sets of strings. The 

non-terminals define sets of strings that help define the language generated by the grammar. 

 A set of tokens, known as terminal symbols (Σ). Terminals are the basic symbols from which 

strings are formed. 

 A set of productions (P). The productions of a grammar specify the manner in which the 

terminals and non-terminals can be combined to form strings. Each production consists of a non-

terminal called the left side of the production, an arrow, and a sequence of tokens and/or on- 

terminals, called the right side of the production. 

 One of the non-terminals is designated as the start symbol (S); from where the production begins. 

The strings are derived from the start symbol by repeatedly replacing a non-terminal (initially the start 

symbol) by the right side of a production, for that non-terminal. 

 



Example 

 We take the problem of palindrome language, which cannot be described by means of Regular 

Expression. That is, L = { w | w = wR } is not a regular language. But it can be described by 

means of CFG, as illustrated below: 

 G = ( V, Σ, P, S ) 

 Where: 

 V = { Q, Z, N } 

 Σ = { 0, 1 } 

 P = { Q → Z | Q → N | Q → ℇ | Z → 0Q0 | N → 1Q1 } 

 S = { Q } 

 This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101, 11111, 

etc 

Syntax Analyzers 

 A syntax analyzer or parser takes the input from a lexical analyzer in the form of token streams. 

The parser analyzes the source code (token stream) against the production rules to detect any 

errors in the code. The output of this phase is a parse tree. 

 

 This way, the parser accomplishes two tasks, i.e., parsing the code, looking for errors and 

generating a parse tree as the output of the phase. 

 Parsers are expected to parse the whole code even if some errors exist in the program. Parsers use 

error recovering strategies. 

 

Derivation 

A derivation is basically a sequence of production rules, in order to get the input string. During 

parsing, we take two decisions for some sentential form of input: 

 Deciding the non-terminal which is to be replaced. 

 Deciding the production rule, by which, the non-terminal will be replaced. 

To decide which non-terminal to be replaced with production rule, we can have two options. 

 



Left-most Derivation 

 If the sentential form of an input is scanned and replaced from left to right, it is called left-most 

derivation. The sentential form derived by the left-most derivation is called the left-sentential 

form. 

Example 

Production rules: 

E → E + E 

E → E * E 

E → id  

Input string: id + id * id 

The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 

Notice that the left-most side non-terminal is always processed first. 

Right-most Derivation 

 If we scan and replace the input with production rules, from right to left, it is known as 

right-most derivation. The sentential form derived from the right-most derivation is called 

the right-sentential form. 

The right-most derivation is: 

E → E + E 

E → E + E * E 

E → E + E * id 

E → E + id * id 

E → id + id * id 

Parse Tree 

 A parse tree is a graphical depiction of a derivation. It is convenient to see how strings 

are derived from the start symbol. The start symbol of the derivation becomes the root of 

the parse tree. Let us see this by an example from the last topic. 

 We take the left-most derivation of a + b * c 



 The left-most derivation is: 

E → E * E 

E → E + E * E 

E → id + E * E 

E → id + id * E 

E → id + id * id 

 

 

Capabilities of CFG 

There are the various capabilities of CFG: 

o Context free grammar is useful to describe most of the programming languages. 

o If the grammar is properly designed then an efficientparser can be constructed automatically. 

o Using the features of associatively & precedence information, suitable grammars for expressions 

can be constructed. 

o Context free grammar is capable of describing nested structures like: balanced parentheses, 

matching begin-end, corresponding if-then-else's & so on. 

 

CHAPTER 5 

Parser 

 Parser is a compiler that is used to break the data into smaller elements coming from lexical 

analysis phase. 

 A parser takes input in the form of sequence of tokens and produces output in the form of parse 

tree. 

 Parsing is of two types: top down parsing and bottom up parsing. 

 

 

 



Top down paring 

o The top down parsing is known as recursive parsing or predictive parsing. 

o Bottom up parsing is used to construct a parse tree for an input string. 

o In the top down parsing, the parsing starts from the start symbol and transform it into the input 

symbol. 

Parse Tree representation of input string "acdb" is as follows: 

 

Bottom up parsing 

o Bottom up parsing is also known as shift-reduce parsing. 

o Bottom up parsing is used to construct a parse tree for an input string. 

o In the bottom up parsing, the parsing starts with the input symbol and construct the parse tree up 

to the start symbol by tracing out the rightmost derivations of string in reverse. 

Example 

Production 

1. E → T   

2. T → T * F   

3. T → id   

4. F → T   

5. F → id   

Parse Tree representation of input string "id * id" is as follows: 



 

 

Bottom up parsing is classified in to various parsing. These are as follows: 

1. Shift-Reduce Parsing 

2. Operator Precedence Parsing 

3. Table Driven LR Parsing 

a) LR( 1 ) 

b) SLR( 1 ) 

c) CLR ( 1 ) 

d) LALR( 1 ) 

Shift reduce parsing 

o Shift reduce parsing is a process of reducing a string to the start symbol of a grammar. 

o Shift reduce parsing uses a stack to hold the grammar and an input tape to hold the string. 

 

o Sift reduce parsing performs the two actions: shift and reduce. That's why it is known as shift 

reduces parsing. 

o At the shift action, the current symbol in the input string is pushed to a stack. 

o At each reduction, the symbols will replaced by the non-terminals. The symbol is the right side of 

the production and non-terminal is the left side of the production. 

Example: 

Grammar: 

 S → S+S     

 S → S-S     

 S → (S)   

 S → a   



Input string: 

a1-(a2+a3)   

Parsing table: 

 

There are two main categories of shift reduce parsing as follows: 

1. Operator-Precedence Parsing 

2. LR-Parser 

Operator precedence parsing 

 Operator precedence grammar is kinds of shift reduce parsing method. It is applied to a small class 

of operator grammars. 

 A grammar is said to be operator precedence grammar if it has two properties: 

 No R.H.S. of any production has a∈. 

 No two non-terminals are adjacent. 

 Operator precedence can only established between the terminals of the grammar. It ignores the 

non-terminal. 

 There are the three operator precedence relations: 

 a⋗ b means that terminal "a" has the higher precedence than terminal "b". 

 a⋖ b means that terminal "a" has the lower precedence than terminal "b". 

 a≐ b means that the terminal "a" and "b" both have same precedence. 



Precedence table: 

 

Parsing Action 

o Both end of the given input string, add the $ symbol. 

o Now scan the input string from left right until the ⋗ is encountered. 

o Scan towards left over all the equal precedence until the first left most ⋖ is encountered. 

o Everything between left most ⋖ and right most ⋗ is a handle. 

o $ on $ means parsing is successful. 

Example 

Grammar: 

 E → E+T/T   

 T → T*F/F   

 F → id   

Given string: 

      w = id + id * id   

Let us consider a parse tree for it as follows: 

 

 

On the basis of above tree, we can design following operator precedence table: 



 

Now let us process the string with the help of the above precedence table: 

 

 

Top-Down Parser 

 We have learnt in the last chapter that the top-down parsing technique parses the input, and starts 

constructing a parse tree from the root node gradually moving down to the leaf nodes. The types 

of top-down parsing are depicted below: 

 

 

 



Recursive Descent Parsing 

 Recursive descent is a top-down parsing technique that constructs the parse tree from the top and 

the input is read from left to right. It uses procedures for every terminal and non-terminal entity. 

This parsing technique recursively parses the input to make a parse tree, which may or may not 

require back-tracking. But the grammar associated with it (if not left factored) cannot avoid back-

tracking. A form of recursive-descent parsing that does not require any back-tracking is known 

as predictive parsing. 

 This parsing technique is regarded recursive as it uses context-free grammar which is recursive in 

nature. 

Back-tracking 

 Top- down parsers start from the root node (start symbol) and match the input string against the 

production rules to replace them (if matched). To understand this, take the following example of 

CFG: 

S →rXd|rZd 

X →oa|ea 

Z →ai 

 For an input string: read, a top-down parser, will behave like this: 

 It will start with S from the production rules and will match its yield to the left-most letter of the 

input, i.e. ‘r’. The very production of S (S → rXd) matches with it. So the top-down parser 

advances to the next input letter (i.e. ‘e’). The parser tries to expand non-terminal ‘X’ and checks 

its production from the left (X → oa). It does not match with the next input symbol. So the top-

down parser backtracks to obtain the next production rule of X, (X → ea). 

 Now the parser matches all the input letters in an ordered manner. The string is accepted. 

 

 

 

 

 

 



Predictive Parser 

 Predictive parser is a recursive descent parser, which has the capability to predict which 

production is to be used to replace the input string. The predictive parser does not suffer from 

backtracking. 

 To accomplish its tasks, the predictive parser uses a look-ahead pointer, which points to the next 

input symbols. To make the parser back-tracking free, the predictive parser puts some constraints 

on the grammar and accepts only a class of grammar known as LL(k) grammar. 

 

 Predictive parsing uses a stack and a parsing table to parse the input and generate a parse tree. 

Both the stack and the input contains an end symbol $ to denote that the stack is empty and the 

input is consumed. The parser refers to the parsing table to take any decision on the input and 

stack element combination. 

 

 In recursive descent parsing, the parser may have more than one production to choose from for a 

single instance of input, whereas in predictive parser, each step has at most one production to 

choose. There might be instances where there is no production matching the input string, making 

the parsing procedure to fail. 

LL Parser 

 An LL Parser accepts LL grammar. LL grammar is a subset of context-free grammar but with 

some restrictions to get the simplified version, in order to achieve easy implementation. LL 



grammar can be implemented by means of both algorithms namely, recursive-descent or table-

driven. 

 LL parser is denoted as LL(k). The first L in LL(k) is parsing the input from left to right, the 

second L in LL(k) stands for left-most derivation and k itself represents the number of look 

aheads. Generally k = 1, so LL(k) may also be written as LL(1). 

 

LL Parsing Algorithm 

 We may stick to deterministic LL(1) for parser explanation, as the size of table grows 

exponentially with the value of k. Secondly, if a given grammar is not LL(1), then usually, it is 

not LL(k), for any given k. 

 Given below is an algorithm for LL(1) Parsing: 

Input: 

stringω 

parsing table M for grammar G 

 

Output: 

IfωisinL(G)then left-most derivation ofω, 

error otherwise. 

 

InitialState: $S on stack (with S being start symbol) 

ω$ in the input buffer 

 

SET ip to point the first symbol ofω$. 

 

repeat 

let X be the top stack symbol and a the symbol pointed byip. 

 

if X∈Vtor $ 

if X = a 

         POP X and advance ip. 

else 

error() 

endif 

 



else /* X is non-terminal */ 

if M[X,a]= X → Y1, Y2,...Yk 

         POP X 

         PUSH Yk,Yk-1,... Y1 /* Y1 on top */ 

Output the production X → Y1, Y2,...Yk 

else 

error() 

endif 

endif 

until X = $ /* empty stack */ 

A grammar G is LL(1) if A → α | β are two distinct productions of G: 

 for no terminal, both α and β derive strings beginning with a. 

 at most one of α and β can derive empty string. 

 if β → t, then α does not derive any string beginning with a terminal in FOLLOW(A). 

 

Predictive Parsing 

 The goal of predictive parsing is to construct a top-down parser that never backtracks. To do so, 

we must transform a grammar in two ways: 

1. eliminate left recursion, and 

2. perform left factoring. 

 These rules eliminate most common causes for backtracking although they do not guarantee a 

completely backtrack-free parsing (called LL(1) as we will see later). 

 

 

 

LR Parser 

 LR parsing is one type of bottom up parsing. It is used to parse the large class of grammars. 

 In the LR parsing, "L" stands for left-to-right scanning of the input. 

 "R" stands for constructing a right most derivation in reverse. 

 "K" is the number of input symbols of the look ahead used to make number of parsing decision. 

 LR parsing is divided into four parts: 

o LR (0) parsing 

o SLR parsing, 

o CLR parsing  

o LALR parsing. 



 

LR algorithm: 

 The LR algorithm requires stack, input, output and parsing table. In all type of LR parsing, input, 

output and stack are same but parsing table is different. 

 

Fig: Block diagram of LR parser 

 Input buffer is used to indicate end of input and it contains the string to be parsed followed by a $ 

Symbol. 

 A stack is used to contain a sequence of grammar symbols with a $ at the bottom of the stack. 

 Parsing table is a two dimensional array. It contains two parts: Action part and Go To part. 

LR (1) Parsing 

Various steps involved in the LR (1) Parsing: 

o For the given input string write a context free grammar. 

o Check the ambiguity of the grammar. 

o Add Augment production in the given grammar. 

o Create Canonical collection of LR (0) items. 

o Draw a data flow diagram (DFA). 

o Construct a LR (1) parsing table. 

 

 



Augment Grammar 

 Augmented grammar G` will be generated if we add one more production in the given grammar 

G. It helps the parser to identify when to stop the parsing and announce the acceptance of the 

input. 

Example 

Given grammar 

1. S → AA   

2. A → aA | b   

The Augment grammar G` is represented by 

1. S`→ S   

2. S → AA   

3. A → aA | b   

 Bottom-up parsing starts from the leaf nodes of a tree and works in upward direction till it 

reaches the root node. Here, we start from a sentence and then apply production rules in reverse 

manner in order to reach the start symbol. The image given below depicts the bottom-up parsers 

available. 

 

Shift-Reduce Parsing 

Shift-reduce parsing uses two unique steps for bottom-up parsing. These steps are known as shift-

step and reduce-step. 

 Shift step: The shift step refers to the advancement of the input pointer to the next input symbol, 

which is called the shifted symbol. This symbol is pushed onto the stack. The shifted symbol is 

treated as a single node of the parse tree. 

 Reduce step : When the parser finds a complete grammar rule (RHS) and replaces it to (LHS), it 

is known as reduce-step. This occurs when the top of the stack contains a handle. To reduce, a 



POP function is performed on the stack which pops off the handle and replaces it with LHS non-

terminal symbol. 

LR Parser 

 The LR parser is a non-recursive, shift-reduce, bottom-up parser. It uses a wide class of context-

free grammar which makes it the most efficient syntax analysis technique.  

 LR parsers are also known as LR(k) parsers, where L stands for left-to-right scanning of the input 

stream; R stands for the construction of right-most derivation in reverse, and k denotes the 

number of lookahead symbols to make decisions. 

 There are three widely used algorithms available for constructing an LR parser: 

 SLR(1) – Simple LR Parser: 

o Works on smallest class of grammar 

o Few number of states, hence very small table 

o Simple and fast construction 

 LR(1) – LR Parser: 

o Works on complete set of LR(1) Grammar 

o Generates large table and large number of states 

o Slow construction 

 LALR(1) – Look-Ahead LR Parser: 

o Works on intermediate size of grammar 

o Number of states are same as in SLR(1) 

LR Parsing Algorithm 

Here we describe a skeleton algorithm of an LR parser: 

token=next_token() 

 

repeat forever 

   s = top of stack 

 

if action[s, token]=“shift si”then 

      PUSH token 

      PUSH si 

token=next_token() 

 

elseif action[s, token]=“reduce A::=β“then 

      POP 2*|β| symbols 

      s = top of stack 

      PUSH A 



      PUSH goto[s,A] 

 

elseif action[s, token]=“accept”then 

return 

 

else 

error() 

LL vs. LR 

LL LR 

Does a leftmost derivation. Does a rightmost derivation in reverse. 

Starts with the root nonterminal on the 

stack. 

Ends with the root nonterminal on the 

stack. 

Ends when the stack is empty. Starts with an empty stack. 

Uses the stack for designating what is 

still to be expected. 

Uses the stack for designating what is 

already seen. 

Builds the parse tree top-down. Builds the parse tree bottom-up. 

Continuously pops a nonterminal off 

the stack, and pushes the corresponding 

right hand side. 

Tries to recognize a right hand side on the 

stack, pops it, and pushes the 

corresponding nonterminal. 

Expands the non-terminals. Reduces the non-terminals. 

Reads the terminals when it pops one 

off the stack. 

Reads the terminals while it pushes them 

on the stack. 

Pre-order traversal of the parse tree. Post-order traversal of the parse tree. 

 

Canonical Collection of LR(0) items 

 An LR (0) item is a production G with dot at some position on the right side of the production. 

 LR(0) items is useful to indicate that how much of the input has been scanned up to a given point 

in the process of parsing. 

 In the LR (0), we place the reduce node in the entire row. 

Example 

Given grammar: 



1. S → AA   

2. A → aA | b   

Add Augment Production and insert '•' symbol at the first position for every production in G 

1. S` → •S   

2. S → •AA   

3. A → •aA    

4. A → •b   

I0 State: 

 Add Augment production to the I0 State and Compute the Closure 

 I0 = Closure (S` → •S) 

 Add all productions starting with S in to I0 State because "•" is followed by the non-

terminal. So, the I0 State becomes 

I0 = S` →•S 

       S→•AA 

 Add all productions starting with "A" in modified I0 State because "•" is followed by the 

non-terminal. So, the I0 State becomes. 

I0= S` →•S 

      S→•AA 

       A →•aA 

       A →•b 

I1= Go to (I0, S) = closure (S` → S•) = S` → S• 

 Here, the Production is reduced so close the State. 

I1= S` → S• 

I2= Go to (I0, A) = closure (S → A•A) 

 Add all productions starting with A in to I2 State because "•" is followed by the non-

terminal. So, the I2 State becomes 

I2 =S→A•A 

       A →•aA 

       A →•b 

 Go to (I2,a) = Closure (A →a•A) = (same as I3) 

 Go to (I2, b) = Closure (A → b•) = (same as I4) 

I3= Go to (I0,a) = Closure (A →a•A) 

 Add productions starting with A in I3. 

A →a•A 

A →•aA 

A →•b 



 Go to (I3, a) = Closure (A →a•A) = (same as I3) 

Go to (I3, b) = Closure (A → b•) = (same as I4) 

I4= Go to (I0, b) = closure (A → b•) = A → b• 

I5= Go to (I2, A) = Closure (S → AA•) = SA → A• 

I6= Go to (I3, A) = Closure (A →aA•) = A →aA• 

 

Drawing DFA: 

The DFA contains the 7 states I0 to I6. 

 

LR(0) Table 

o If a state is going to some other state on a terminal then it correspond to a shift move. 

o If a state is going to some other state on a variable then it correspond to go to move. 

o If a state contain the final item in the particular row then write the reduce node completely. 

 

Explanation: 

o I0 on S is going to I1 so write it as 1. 

o I0 on A is going to I2 so write it as 2. 

o I2 on A is going to I5 so write it as 5. 

o I3 on A is going to I6 so write it as 6. 

o I0, I2and I3on a are going to I3 so write it as S3 which means that shift 3. 

o I0, I2 and I3 on b are going to I4 so write it as S4 which means that shift 4. 



o I4, I5 and I6 all states contains the final item because they contain • in the right most end. So rate 

the production as production number. 

Productions are numbered as follows: 

         S  →      AA    ... (1) 

    A   →     aA      ... (2) 

A    →    b     ... (3) 

o I1 contains the final item which drives(S` → S•), so action {I1, $} = Accept. 

o I4 contains the final item which drives A → b• and that production corresponds to the production 

number 3 so write it as r3 in the entire row. 

o I5 contains the final item which drives S → AA• and that production corresponds to the 

production number 1 so write it as r1 in the entire row. 

o I6 contains the final item which drives A →aA• and that production corresponds to the production 

number 2 so write it as r2 in the entire row. 

SLR (1) Parsing 

 SLR (1) refers to simple LR Parsing. It is same as LR(0) parsing. The only difference is in the 

parsing table.To construct SLR (1) parsing table, we use canonical collection of LR (0) item. 

 In the SLR (1) parsing, we place the reduce move only in the follow of left hand side. 

 Various steps involved in the SLR (1) Parsing: 

 For the given input string write a context free grammar 

o Check the ambiguity of the grammar 

o Add Augment production in the given grammar 

o Create Canonical collection of LR (0) items 

o Draw a data flow diagram (DFA) 

o Construct a SLR (1) parsing table 

SLR (1) Table Construction 

 The steps which use to construct SLR (1) Table is given below: 

 If a state (Ii) is going to some other state (Ij) on a terminal then it corresponds to a shift move in 

the action part. 

 

 If a state (Ii) is going to some other state (Ij) on a variable then it correspond to go to move in the 

Go to part. 



 

 If a state (Ii) contains the final item like A →ab• which has no transitions to the next state then the 

production is known as reduce production. For all terminals X in FOLLOW (A), write the reduce 

entry along with their production numbers. 

Example 

1. S -> •Aa    

2.   A->αβ•    

1. Follow(S) = {$}   

2. Follow (A) = {a}   

 

SLR ( 1 ) Grammar 

S → E 

E→ E + T | T 

T→ T * F | F 

F→ id 

 Add Augment Production and insert '•' symbol at the first position for every production in 

G 

S` →•E 

E→•E + T 

E →•T 

T→•T * F 

T →•F 

F→•id 

I0 State: 



 Add Augment production to the I0 State and Compute the Closure 

I0 = Closure (S` →•E) 

 Add all productions starting with E in to I0 State because "." is followed by the non-

terminal. So, the I0 State becomes 

I0 = S` →•E 

        E→•E + T 

        E →•T 

 Add all productions starting with T and F in modified I0 State because "." is followed by 

the non-terminal. So, the I0 State becomes. 

I0= S` →•E 

      E→•E + T 

       E →•T 

      T→•T * F 

       T →•F 

      F→•id 

I1= Go to (I0, E) = closure (S` → E•, E → E• + T) 

I2= Go to (I0, T) = closure (E → T•T, T•→ * F) 

I3= Go to (I0, F) = Closure ( T → F• ) = T → F• 

I4= Go to (I0, id) = closure ( F → id•) = F → id• 

I5= Go to (I1, +) = Closure (E → E +•T) 

 Add all productions starting with T and F in I5 State because "." is followed by the non-terminal. 

So, the I5 State becomes 

I5 = E → E +•T 

       T→•T * F 

       T →•F 

      F→•id 

 Go to (I5, F) = Closure (T → F•) = (same as I3) 

Go to (I5, id) = Closure (F → id•) = (same as I4) 

I6= Go to (I2, *) = Closure (T → T * •F) 

 Add all productions starting with F in I6 State because "." is followed by the non-terminal. 

So, the I6 State becomes 



I6 = T → T * •F 

        F→•id 

 Go to (I6, id) = Closure (F → id•) = (same as I4) 

I7= Go to (I5, T) = Closure (E → E + T•) = E → E + T• 

I8= Go to (I6, F) = Closure (T → T * F•) = T → T * F• 

Drawing DFA: 

 

SLR (1) Table 

 

Explanation: 

First (E) = First (E + T) ∪ First (T) 

First (T) = First (T * F) ∪ First (F) 

First (F) = {id} 

First (T) = {id} 

First (E) = {id} 

Follow (E) = First (+T) ∪ {$} = {+, $} 

Follow (T) = First (*F) ∪ First (F) 

               = {*, +, $} 

Follow (F) = {*, +, $} 



o I1 contains the final item which drives S → E• and follow (S) = {$}, so action {I1, $} = Accept  

o I2 contains the final item which drives E → T• and follow (E) = {+, $}, so action {I2, +} = R2, 

action {I2, $} = R2 

o I3 contains the final item which drives T → F• and follow (T) = {+, *, $}, so action {I3, +} = R4, 

action {I3, *} = R4, action {I3, $} = R4 

o I4 contains the final item which drives F → id• and follow (F) = {+, *, $}, so action {I4, +} = R5, 

action {I4, *} = R5, action {I4, $} = R5 

o I7 contains the final item which drives E → E + T• and follow (E) = {+, $}, so action {I7, +} = 

R1, action {I7, $} = R1 

o I8 contains the final item which drives T → T * F• and follow (T) = {+, *, $}, so action {I8, +} = 

R3, action {I8, *} = R3, action {I8, $} = R3. 

 

LALR   PARSING 

MOTIVATION 

 The LALR  ( Look Ahead-LR ) parsing  method  is between  SLR   and   Canonical  LR  

both  in terms  of  power  of  parsing  grammars  and  ease  of  implementation.    

 This method is often used in practice because the tables obtained by it  are considerably 

smaller than the Canonical  LR tables, yet most common syntactic  constructs of 

programming languages can be expressed  conveniently by an LALR  grammar.  

  The same is almost true for SLR grammars, but there are a few constructs that can not be 

handled by SLR techniques. 

CONSTRUCTING LALR PARSING TABLES 

 CORE:      A core is a set of LR (0) (SLR) items for the grammar, and an LR (1)    (Canonical 

LR) grammar may produce more than two sets of items with the same core. 

 The core does not contain any  look ahead information.   

 Example:   Let s1 and s2 are two states in a Canonical LR grammar. 

                              S1 – {C ->c.C, c/d; C -> .cC, c/d; C -> .d, c/d} 

        S1 – {C ->c.C, $; C -> .cC, $; C -> .d, $} 

 These two states have the same core consisting of only the production rules without any look 

ahead information. 

 

 

 



CONSTRUCTION IDEA: 

1. Construct the set of LR (1) items. 

2. Merge the sets with common core together as one set, if no conflict ( shift-shift or shift-

reduce) arises. 

3. If a conflict arises it implies that the grammar is not LALR. 

4. The parsing table is constructed from the collection of merged sets of items using the same 

algorithm for LR (1) parsing. 

ALGORITHM: 

 Input: An augmented grammar G’. 

Output: The LALR parsing table actions and goto for G’. 

Method: 

1. Construct C= {I0, I1, I2,… , In}, the collection of sets of LR(1) items. 

2.  For each core present in among these sets, find all sets having the core, and replace 

these sets by their union. 

3. Parsing action table is constructed as for Canonical LR. 

4. The goto table is constructed by taking the union of all sets of items having the 

same core. If J is the union of one or more sets of LR (1) items, that is, J=I1 U I2 U 

… U Ik, then the cores of goto(I1,X), goto(I2,X),…, goto(Ik, X) are the same as all 

of them have same core. Let K be the union of all sets of items having same core as 

goto(I1, X). Then goto(J,X)=K. 

EXAMPLE 

 GRAMMAR: 

1. S’ -> S 

2. S ->  CC 

3. C -> cC 

4. C -> d 

STATES: 

 I0 : S’ -> .S, $ 

            S -> .CC, $ 

       C -> .c C, c /d 

            C -> .d, c /d 

 I1: S’ -> S., $ 

 I2: S -> C.C, $ 

     C -> .Cc, $ 



     C -> .d, $  

 I3: C -> c. C, c /d 

           C -> .Cc, c /d 

      C -> .d, c /d 

 I4: C -> d., c /d 

 I5: S -> CC., $ 

 I6: C -> c.C, $ 

           C -> .cC, $ 

           C -> .d, $ 

 I7: C -> d., $ 

 I8: C -> cC., c /d 

 I9: C -> cC., $ 

   CANONICAL PARSING TABLE:       

STATE Actions Goto 

c d $ S C 

0 S3 S4  1 2 

1   acc   

2 S6 S7   5 

3 S3 S4   8 

4 R3 R3    

5   R1   

6 S6 S7   9 

7   R3   

8 R2 R2    

9   R2   

                   

 NOTE: For goto graph see the construction used in Canonical LR. 

     



LALR PARSING TABLE: 

 

START 

 

Actions 

goto 

 

C D $ S C 

0 S36 S47  1 2 

1   Acc   

2 S36 S47   5 

36 S36 S47   89 

47 R3 R3 R3   

5   R1   

89 R2 R2 R2   

  

I2 

I5 

I6 

I9 I3 
I8 

I4 
I7 

I0 I1 



 Showing states with same core with same colour which get merged in conversion from LR(1) to 

LALR. 

 States merged together:  3 and 6 

                      4 and 7                                      

      8 and 9 
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CHAPTER 7 

Syntax directed translation 

 In syntax directed translation, along with the grammar we associate some informal 

notations and these notations are called as semantic rules. 

 So we can say that 

Grammar + semantic rule = SDT (syntax directed translation)   

 In syntax directed translation, every non-terminal can get one or more than one 

attribute or sometimes 0 attribute depending on the type of the attribute. The value 

of these attributes is evaluated by the semantic rules associated with the production 

rule. 

 In the semantic rule, attribute is VAL and an attribute may hold anything like a 

string, a number, a memory location and a complex record 

 In Syntax directed translation, whenever a construct encounters in the 

programming language then it is translated according to the semantic rules define 

in that particular programming language. 

 

 

 



Example 

Production Semantic Rules 

E → E + T E.val := E.val + T.val 

E → T E.val := T.val 

T → T * F T.val := T.val + F.val 

T → F T.val := F.val 

F → (F) F.val := F.val 

F →num F.val := num.lexval 

E.val is one of the attributes of E. 

Syntax directed translation scheme 

o The Syntax directed translation scheme is a context -free grammar. 

o The syntax directed translation scheme is used to evaluate the order of semantic 

rules. 

o In translation scheme, the semantic rules are embedded within the right side of the 

productions. 

o The position at which an action is to be executed is shown by enclosed between 

braces. It is written within the right side of the production. 

Example 

Production Semantic Rules 

S → E $ { printE.VAL } 

E → E + E {E.VAL := E.VAL + E.VAL } 

E → E * E {E.VAL := E.VAL * E.VAL } 

E → (E) {E.VAL := E.VAL } 

E → I {E.VAL := I.VAL } 

I → I digit {I.VAL := 10 * I.VAL + LEXVAL } 

I → digit { I.VAL:= LEXVAL} 

 



Implementation of Syntax directed translation 

 Syntax direct translation is implemented by constructing a parse tree and 

performing the actions in a left to right depth first order. 

 SDT is implementing by parse the input and produce a parse tree as a result. 

Example 

Parse tree for SDT: 

 

Fig: Parse tree 

Syntax Directed Translation  

Background : 

 Parser uses a CFG(Context-free-Grammer) to validate the input string and produce 

output for next phase of the compiler. Output could be either a parse tree or abstract 

syntax tree.  

 Now to interleave semantic analysis with syntax analysis phase of the compiler, we 

use Syntax Directed Translation. 

 Definition 

Syntax Directed Translation are augmented rules to the grammar that facilitate 

semantic analysis. SDT involves passing information bottom-up and/or top-down 

the parse tree in form of attributes attached to the nodes.  

 Syntax directed translation rules use 1) lexical values of nodes, 2) constants & 3) 

attributes associated to the non-terminals in their definitions. 

 The general approach to Syntax-Directed Translation is to construct a parse tree or 

syntax tree and compute the values of attributes at the nodes of the tree by visiting 

them in some order. 

  In many cases, translation can be done during parsing without building an explicit 

tree. 

Example 

E -> E+T | T 

T -> T*F | F 

F -> INTLIT  



 This is a grammar to syntactically validate an expression having additions and 

multiplications in it. Now, to carry out semantic analysis we will augment SDT rules 

to this grammar, in order to pass some information up the parse tree and check for 

semantic errors, if any. In this example we will focus on evaluation of the given 

expression, as we don’t have any semantic assertions to check in this very basic 

example. 

   E -> E+T     { E.val = E.val + T.val }   PR#1 

   E -> T       { E.val = T.val }           PR#2 

   T -> T*F     { T.val = T.val * F.val }   PR#3 

   T -> F       { T.val = F.val }           PR#4 

   F ->INTLIT  {F.val = INTLIT.lexval }   PR#5 

 For understanding translation rules further, we take the first SDT augmented to [ E -

> E+T ] production rule. The translation rule in consideration has val as attribute for 

both the non-terminals – E & T.  

 Right hand side of the translation rule corresponds to attribute values of right side 

nodes of the production rule and vice-versa. Generalizing, SDT are augmented rules 

to a CFG that associate 1) set of attributes to every node of the grammar and 2) set 

of translation rules to every production rule using attributes, constants and lexical 

values. 

 Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse tree 

corresponding to S would be 

 

 To evaluate translation rules, we can employ one depth first search traversal on the 

parse tree. This is possible only because SDT rules don’t impose any specific order 

on evaluation until children attributes are computed before parents for a grammar 

having all synthesized attributes.  



 Otherwise, we would have to figure out the best suited plan to traverse through the 

parse tree and evaluate all the attributes in one or more traversals. For better 

understanding, we will move bottom up in left to right fashion for computing 

translation rules of our example. 

 

 Above diagram shows how semantic analysis could happen. The flow of information 

happens bottom-up and all the children attributes are computed before parents, as 

discussed above.  

 Right hand side nodes are sometimes annotated with subscript 1 to distinguish 

between children and parent. 

Additional Information 

 Synthesized Attributes are such attributes that depend only on the attribute values 

of children nodes. 

Thus [ E -> E+T { E.val = E.val + T.val } ] has a synthesized attribute val 

corresponding to node E. If all the semantic attributes in an augmented grammar are 

synthesized, one depth first search traversal in any order is sufficient for semantic 

analysis phase. 

 Inherited Attributes are such attributes that depend on parent and/or siblings 

attributes. 

Thus [ Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val } ], where E &Ep are 



same production symbols annotated to differentiate between parent and child, has an 

inherited attribute val corresponding to node T. 

: 

 

Intermediate code 

 Intermediate code is used to translate the source code into the machine code. 

Intermediate code lies between the high-level language and the machine language. 

 

Fig: Position of intermediate code generator 

o If the compiler directly translates source code into the machine code without 

generating intermediate code then a full native compiler is required for each new 

machine. 

o The intermediate code keeps the analysis portion same for all the compilers that's 

why it doesn't need a full compiler for every unique machine. 

o Intermediate code generator receives input from its predecessor phase and 

semantic analyzer phase. It takes input in the form of an annotated syntax tree. 

o Using the intermediate code, the second phase of the compiler synthesis phase is 

changed according to the target machine. 

Intermediate representation 

 Intermediate code can be represented in two ways: 

1. High Level intermediate code: 

 HHigh level intermediate code can be represented as source code. To enhance 

performance of source code, we can easily apply code modification. But to 

optimize the target machine, it is less preferred. 

2. Low Level intermediate code 

 Low level intermediate code is close to the target machine, which makes it suitable 

for register and memory allocation etc. it is used for machine-dependent 

optimizations. 



Postfix Notation 

o Postfix notation is the useful form of intermediate code if the given language is 

expressions. 

 Postfix notation is also called as 'suffix notation' and 'reverse polish'. 

 Postfix notation is a linear representation of a syntax tree. 

 In the postfix notation, any expression can be written unambiguously without 

parentheses. 

 The ordinary (infix) way of writing the sum of x and y is with operator in the 

middle: x * y. But in the postfix notation, we place the operator at the right end as 

xy *. 

 In postfix notation, the operator follows the operand. 

Example 

Production 

 E  →  E1 op E2                        

 E  →  (E1)   

 E   →  id   

Semantic Rule Program fragment 

E.code = E1.code || E2.code || op print op 

E.code = E1.code  

E.code = id print id 

Parse tree and Syntax tree 

 When you create a parse tree then it contains more details than actually needed. 

So, it is very difficult to compiler to parse the parse tree. Take the following parse 

tree as an example: 

 



 In the parse tree, most of the leaf nodes are single child to their parent nodes. 

 In the syntax tree, we can eliminate this extra information. 

 Syntax tree is a variant of parse tree. In the syntax tree, interior nodes are 

operators and leaves are operands. 

 Syntax tree is usually used when represent a program in a tree structure. 

A sentence id + id * id would have the following syntax tree: 

 

Abstract syntax tree can be represented as: 

 

 Abstract syntax trees are important data structures in a compiler. It contains the 

least unnecessary information. 

 Abstract syntax trees are more compact than a parse tree and can be easily used by 

a compiler. 

 

Three address code 

 Three-address code is an intermediate code. It is used by the optimizing compilers. 

 In three-address code, the given expression is broken down into several separate 

instructions. These instructions can easily translate into assembly language. 

 Each Three address code instruction has at most three operands. It is a combination 

of assignment and a binary operator. 

 

 

 



Example 

Given Expression: 

a := (-c * b) + (-c * d)   

Three-address code is as follows: 

t1 := -c 

t2 := b*t1 

t3 := -c 

t4 := d * t3 

t5 := t2 + t4 

a := t5 

 t is used as registers in the target program. 

 The three address code can be represented in two forms: quadruples and triples. 

Quadruples 

 The quadruples have four fields to implement the three address code. The field of 

quadruples contains the name of the operator, the first source operand, the second 

source operand and the result respectively. 

 

Fig: Quadruples field 

Example 

o a := -b * c + d   

o Three-address code is as follows: 

o t1 := -b 

o t2 := c + d 

o t3 := t1 * t2 

o a := t3 

 

 



These statements are represented by quadruples as follows: 

 Operator Source 1 Source 2 Destination 

(0) uminus b - t1 

(1) + c d t2 

(2) * t1 t2 t3 

(3) := t3 - a 

 

Triples 

 The triples have three fields to implement the three address code. The field of 

triples contains the name of the operator, the first source operand and the second 

source operand. 

 In triples, the results of respective sub-expressions are denoted by the position of 

expression. Triple is equivalent to DAG while representing expressions. 

 

Fig: Triples field 

Example: 
a := -b * c + d   

Three address code is as follows: 

t1 := -b t2 := c + dM t3 := t1 * t2 a := t3 

These statements are represented by triples as follows:  

 Operator Source 1 Source 2 

(0) uminus B - 

(1) + C d 

(2) * (0) (1) 

(3) := (2) - 

 



Translation of Assignment Statements 

 In the syntax directed translation, assignment statement is mainly deals with 

expressions. The expression can be of type real, integer, array and records. 

Consider the grammar 

 S  →    id := E   

 E    →  E1 + E2   

 E   →   E1 * E2   

 E   →   (E1)   

 E   →   id   

The translation scheme of above grammar is given below: 

Production rule Semantic actions 

S → id :=E {p = look_up(id.name); 

 If p ≠ nil then 

 Emit (p = E.place) 

 Else 

 Error; 

} 

E → E1 + E2 {E.place = newtemp(); 

 Emit (E.place = E1.place '+' E2.place) 

} 

E → E1 * E2 {E.place = newtemp(); 

 Emit (E.place = E1.place '*' E2.place) 

} 

E → (E1) {E.place = E1.place} 

E → id {p = look_up(id.name); 

 If p ≠ nil then 

 Emit (p = E.place) 

 Else 

 Error; 

} 

o The p returns the entry for id.name in the symbol table. 



Boolean expressions 

 Boolean expressions have two primary purposes. They are used for computing the 

logical values. They are also used as conditional expression using if-then-else or 

while-do. 

Consider the grammar 

E  →  E OR E   

E  →  E AND E   

E  →  NOT E    

E  →  (E)   

E →  id relop id   

E  →  TRUE   

E  →  FALSE   

 The relop is denoted by <, >, <, >. 

 The AND and OR are left associated. NOT has the higher precedence then AND and lastly 

OR. 

Production rule Semantic actions 

E → E1 OR E2 {E.place = newtemp(); 

Emit (E.place ':=' E1.place 'OR' E2.place) 

} 

E → E1 + E2 {E.place = newtemp(); 

Emit (E.place ':=' E1.place 'AND' E2.place) 

} 

E → NOT E1 {E.place = newtemp(); 

 Emit (E.place ':=' 'NOT' E1.place) 

} 

E → (E1) {E.place = E1.place} 

E → id relop id2 {E.place = newtemp(); 

 Emit ('if' id1.place relop.op id2.place 'goto' 

 nextstar + 3); 

 EMIT (E.place ':=' '0') 

 EMIT ('goto' nextstat + 2) 



 EMIT (E.place ':=' '1') 

} 

E → TRUE {E.place := newtemp(); 

 Emit (E.place ':=' '1') 

} 

E → FALSE {E.place := newtemp(); 

 Emit (E.place ':=' '0') 

} 

 The EMIT function is used to generate the three address code and the newtemp( ) 

function is used to generate the temporary variables. 

 The E → id relop id2 contains the next_state and it gives the index of next three 

address statements in the output sequence. 

 Here is the example which generates the three address code using the above 

translation scheme: 

 p>q AND r<s OR u>r   

 100: if p>q goto 103   

 101: t1:=0   

 102: goto 104   

 103: t1:=1   

 104: if r>s goto 107   

 105: t2:=0   

 106: goto 108   

 107: t2:=1   

 108: if u>v goto 111   

 109: t3:=0   

 110: goto 112   

 111: t3:= 1   

 112: t4:= t1 AND t2   

 113: t5:= t4 OR t3   

 

 



Statements that alter the flow of control 

 The goto statement alters the flow of control. If we implement goto statements 

then we need to define a LABEL for a statement. A production can be added for 

this purpose: 

 S →     LABEL : S   

 LABEL →     id   

 In this production system, semantic action is attached to record the LABEL and its 

value in the symbol table. 

 Following grammar used to incorporate structure flow-of-control constructs: 

 S →  if E then S   

 S  →   if E then S else S   

 S →    while E do S   

 S →    begin L end   

 S→     A   

 L→    L ; S   

 L →   S   

 Here, S is a statement, L is a statement-list, A is an assignment statement and E is 

a Boolean-valued expression. 

Translation scheme for statement that alters flow of control 

o We introduce the marker non-terminal M as in case of grammar for Boolean 

expression. 

o This M is put before statement in both if then else. In case of while-do, we need to 

put M before E as we need to come back to it after executing S. 

o In case of if-then-else, if we evaluate E to be true, first S will be executed. 

o After this we should ensure that instead of second S, the code after the if-then else 

will be executed. Then we place another non-terminal marker N after first S. 

The grammar is as follows: 

 S →   if E then M S   

 S →    if E then M S else M S   

 S →    while M E do M S   

 S →    begin L end   

 S →    A   



 L→    L ; M S   

 L →   S   

 M →    ∈   

 N →    ∈   

The translation scheme for this grammar is as follows: 

Production rule Semantic actions 

S → if E then M S1 BACKPATCH (E.TRUE, M.QUAD) 

S.NEXT = MERGE (E.FALSE, S1.NEXT) 

S → if E then M1 S1 else 

M2 S2 

BACKPATCH (E.TRUE, M1.QUAD) 

BACKPATCH (E.FALSE, M2.QUAD) 

S.NEXT = MERGE (S1.NEXT, N.NEXT, S2.NEXT) 

S → while M1 E do M2 S1 BACKPATCH (S1,NEXT, M1.QUAD) 

BACKPATCH (E.TRUE, M2.QUAD) 

S.NEXT = E.FALSE 

GEN (goto M1.QUAD) 

S → begin L end S.NEXT = L.NEXT 

S → A S.NEXT = MAKELIST () 

L → L ; M S BACKPATHCH (L1.NEXT, M.QUAD) 

L.NEXT = S.NEXT 

L → S L.NEXT = S.NEXT 

M →∈ M.QUAD = NEXTQUAD 

N→∈ N.NEXT = MAKELIST (NEXTQUAD) 

GEN (goto_) 

 



Postfix Translation 

 In a production A→α, the translation rule of A.CODE consists of the 

concatenation of the CODE translations of the non-terminals in α in the same order 

as the non-terminals appear in α. 

 Production can be factored to achieve postfix form. 

Postfix translation of while statement 

The production 

 S   →  while M1 E do M2 S1 

Can be factored as: 

 S →    C S1   

 C →    W E do   

 W →    while   

A suitable transition scheme would be 

Postfix translation of for statement 

The production 

 S     for L = E1 step E2 to E3 do S1   

Can be factored as 

 F →    for L   

 T  →   F = E1 by E2 to E3 do   

 S  →   T S1   

Production Rule Semantic Action 

W → while W.QUAD = NEXTQUAD 

C → W E do C W E do 

S→ C S1 BACKPATCH (S1.NEXT, C.QUAD) 

S.NEXT = C.FALSE 

GEN (goto C.QUAD) 



o The Emit function is used for appending the three address code to the output file. 

Otherwise it will report an error. 

o The newtemp() is a function used to generate new temporary variables. 

o E.place holds the value of E. 

 

Translation With A Top Down Parser 

 

 Any translation done by top down parser can be done in a bottom up parser also. 

 But in certain situations, translation with top down parser is advantageous as ricks. 

such as placing a marker non terminal can be avoided 

 Semantic routines can be called in the middle of productions in top down parser.So 

the location of a[i] can be computed at the run time by evaluating the formula 

i*width+c where c is (base A low *widyh) which is evaluated at compile tima. 

 Intermediate code generator should produce the code to evaluate this formula 

i*width+c (one multiplication and one addition operation) 

 A two dimensional array can be stored in either row –major(row by row) or colum 

major(column by column) 

 Most of the programming languages use row major based method. 

 The location of A[i1,i2] is based A+(i1-row)*n2 +i2-low2)* width. 
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 Implementation of block structured languages 

 Storage allocation in block structured language 

CHAPTER :10  -Error Detection And Recovery 

 Errors 

 Lexical Phase errors 

 Syntactic phase errors 

 Semantic errors. 

 

 

CHAPTER 8 

The contents of a symbol table 

Symbol Table 

 Symbol table is an important data structure used in a compiler. 

 Symbol table is used to store the information about the occurrence of various 

entities such as objects, classes, variable name, interface, function name etc. it is 

used by both the analysis and synthesis phases. 

Symbol Table entries – Each entry in symbol table is associated with attributes that support 

compiler in different phases. 

Items stored in Symbol table: 

 Variable names and constants 

 Procedure and function names 

 Literal constants and strings 

 Compiler generated temporaries 

 Labels in source languages 



Information used by compiler from Symbol table: 

 Data type and name 

 Declaring procedures 

 Offset in storage 

 If structure or record then, pointer to structure table. 

 For parameters, whether parameter passing by value or by reference 

 Number and type of arguments passed to function 

 Base Address 

Operations of Symbol table – The basic operations defined on a symbol table include: 

 

 
 

 

 

The symbol table used for following purposes: 

o It is used to store the name of all entities in a structured form at one place. 

o It is used to verify if a variable has been declared. 

o It is used to determine the scope of a name. 

o It is used to implement type checking by verifying assignments and expressions in the 

source code are semantically correct. 

o A symbol table can either be linear or a hash table. Using the following format, it 

maintains the entry for each name. 

1. <symbol name, type, attribute>   

 For example, suppose a variable store the information about the following variable 

declaration: 

 static int salary    

 then, it stores an entry in the following format: 

 <salary, int, static>   

 The clause attribute contains the entries related to the name. 

Implementation 

 The symbol table can be implemented in the unordered list if the compiler is used to 

handle the small amount of data. 



 A symbol table can be implemented in one of the following techniques: 

 Linear (sorted or unsorted) list 

 Hash table 

 Binary search tree 

 Symbol table are mostly implemented as hash table. 

Operations 

The symbol table provides the following operations: 

Insert () 

o Insert () operation is more frequently used in the analysis phase when the tokens are 

identified and names are stored in the table. 

o The insert() operation is used to insert the information in the symbol table like the unique 

name occurring in the source code. 

o In the source code, the attribute for a symbol is the information associated with that 

symbol. The information contains the state, value, type and scope about the symbol. 

o The insert () function takes the symbol and its value in the form of argument. 

  

For example: 

int x;   

Should be processed by the compiler as: 

insert (x, int)   

lookup() 

In the symbol table, lookup() operation is used to search a name. It is used to determine: 

o The existence of symbol in the table. 

o The declaration of the symbol before it is used. 

o Check whether the name is used in the scope. 

o Initialization of the symbol. 

o Checking whether the name is declared multiple times. 

The basic format of lookup() function is as follows: 

 lookup (symbol)   

 This format is varies according to the programming language 

Activation Record 
o Control stack is a run time stack which is used to keep track of the live procedure 

activations i.e. it is used to find out the procedures whose execution have not been 

completed. 



o When it is called (activation begins) then the procedure name will push on to the stack 

and when it returns (activation ends) then it will popped. 

o Activation record is used to manage the information needed by a single execution of a 

procedure. 

o An activation record is pushed into the stack when a procedure is called and it is popped 

when the control returns to the caller function. 

The diagram below shows the contents of activation records: 

 

 

Return Value: It is used by calling procedure to return a value to calling procedure. 

Actual Parameter: It is used by calling procedures to supply parameters to the called 

procedures. 

Control Link: It points to activation record of the caller. 

Access Link: It is used to refer to non-local data held in other activation records. 

Saved Machine Status: It holds the information about status of machine before the procedure is 

called. 

Local Data: It holds the data that is local to the execution of the procedure. 

Temporaries: It stores the value that arises in the evaluation of an expression. 

 

 



 

Data structure for symbol table 

 

Following are commonly used data structure for implementing symbol table :- 

1. List – 

 In this method, an array is used to store names and associated information. 

 A pointer “available” is maintained at end of all stored records and new names are 

added in the order as they arrive 

 To search for a name we start from beginning of list till available pointer and if not 

found we get an error “use of undeclared name” 

 While inserting a new name we must ensure that it is not already present otherwise 

error occurs i.e. “Multiple defined name” 

 Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

 Advantage is that it takes minimum amount of space. 

2. Linked List – 

 This implementation is using linked list. A link field is added to each record. 

 Searching of names is done in order pointed by link of link field. 

 A pointer “First” is maintained to point to first record of symbol table. 

 Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

3. Hash Table – 

 In hashing scheme two tables are maintained – a hash table and symbol table and is 

the most commonly used method to implement symbol tables.. 

 A hash table is an array with index range: 0 to tablesize – 1.These entries are pointer 

pointing to names of symbol table. 

 To search for a name we use hash function that will result in any integer between 0 to 

tablesize – 1. 

 Insertion and lookup can be made very fast – O(1). 

 Advantage is quick search is possible and disadvantage is that hashing is complicated 

to implement. 

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/hashing-data-structure/


 

4. Binary Search Tree – 

 Another approach to implement symbol table is to use binary search tree i.e. we add 

two link fields i.e. left and right child. 

 All names are created as child of root node that always follow the property of binary 

search tree. 

 Insertion and lookup are O(log2 n) on average. 

 

 

Representing Scope Information 

In the source program, every name possesses a region of validity, called the scope of that name. 

The rules in a block-structured language are as follows: 

1. If a name declared within block B then it will be valid only within B. 

https://www.geeksforgeeks.org/binary-search-tree-data-structure/


2. If B1 block is nested within B2 then the name that is valid for block B2 is also valid for 

B1 unless the name's identifier is re-declared in B1. 

 These scope rules need a more complicated organization of symbol table 

than a list of associations between names and attributes. 

 Tables are organized into stack and each table contains the list of names 

and their associated attributes. 

 Whenever a new block is entered then a new table is entered onto the 

stack. The new table holds the name that is declared as local to this block. 

 When the declaration is compiled then the table is searched for a name. 

 If the name is not found in the table then the new name is inserted. 

 When the name's reference is translated then each table is searched, 

starting from the each table on the stack. 

For example: 

int x;   

void f(int m) {   

     float x, y;   

{   

            int i, j;   

            int u, v;   

}   

}   

int g (int n)   

{   

      bool t;   

}   

 

Fig: Symbol table organization that complies with static scope information rules 

 

 



CHAPTER 9: 

RUN-TIME STORAGE MANAGEMENT 

 The information which required during an execution of a procedure is kept in a block of 

storage called an activation record. The activation record includes storage for names local 

to the procedure. 

 We can describe address in the target code using the following ways: 

 Static allocation 

 Stack allocation 

 In static allocation, the position of an activation record is fixed in memory at compile 

time. 

 In the stack allocation, for each execution of a procedure a new activation record is 

pushed onto the stack. When the activation ends then the record is popped. 

 For the run-time allocation and deallocation of activation records the following three-

address statements are associated: 

 Call 

 Return 

 Halt 

 Action, a placeholder for other statements 

 We assume that the run-time memory is divided into areas for: 

1. Code 

2. Static data 

3. Stack 

 

Implementation Of A Simple Stack Allocation: 

 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 

 
 

 



 
 

  

 

 
 

 

  

 

  

 

 

 

 
 

  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 
 

 

 



 
 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

  

 

 



 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

Implementation of  block structured languages 

 Basic block contains a sequence of statement. The flow of control enters at the beginning 

of the statement and leave at the end without any halt (except may be the last instruction 

of the block). 

 The following sequence of three address statements forms a basic block: 

 t1:= x * x   

 t2:= x * y   

 t3:= 2 * t2   

 t4:= t1 + t3   

 t5:= y * y   

 t6:= t4 + t5   

Basic block construction: 

Algorithm: Partition into basic blocks 

Input: It contains the sequence of three address statements 

Output: it contains a list of basic blocks with each three address statement in exactly one block 

Method: First identify the leader in the code. The rules for finding leaders are as follows: 

o The first statement is a leader. 

o Statement L is a leader if there is an conditional or unconditional goto statement like: 

if....goto L or goto L 

o Instruction L is a leader if it immediately follows a goto or conditional goto statement 

like: if goto B or goto B 

 For each leader, its basic block consists of the leader and all statement up to. It doesn't 

include the next leader or end of the program. 

 Consider the following source code for dot product of two vectors a and b of length 10: 

code for the above source program is given below: 

B1 

(1) prod := 0    



(2) i := 1   

B2 

1. (3) t1 := 4* i    

2. (4) t2 := a[t1]    

3. (5) t3 := 4* i    

4. (6) t4 := b[t3]    

5. (7) t5 := t2*t4    

6. (8) t6 := prod+t5    

7. (9) prod := t6    

8. (10)    t7 := i+1    

9. (11)    i := t7    

10. (12)    if i<=10 goto (3)       

 Basic block B1 contains the statement (1) to (2) 

1. Basic block begin    

2. prod :=0;    

3. i:=1;    

4. do begin    

5. prod :=prod+ a[i] * b[i];    

6. i :=i+1;    

7. end    

8. while i <= 10    

9. end   

The three address B2 contains the statement (3) to (12) 

Optimization of Basic Blocks: 

 Optimization process can be applied on a basic block. While optimization, we don't need 

to change the set of expressions computed by the block. 

 There are two type of basic block optimization. These are as follows: 

1. Structure-Preserving Transformations 

2. Algebraic Transformations 

 



 Structure preserving transformations: 

The primary Structure-Preserving Transformation on basic blocks is as follows: 

 Common sub-expression elimination 

 Dead code elimination 

 Renaming of temporary variables 

 Interchange of two independent adjacent statements 

(a) Common sub-expression elimination: 

 In the common sub-expression, you don't need to be computed it over and over again. 

Instead of this you can compute it once and kept in store from where it's referenced when 

encountered again. 

a : = b + c 

b : = a - d 

c : = b + c 

d : = a - d 

 In the above expression, the second and forth expression computed the same expression. 

So the block can be transformed as follows: 

a : = b + c 

b : = a - d 

c : = b + c 

d : = b 

(b) Dead-code elimination 

 It is possible that a program contains a large amount of dead code. 

 This can be caused when once declared and defined once and forget to remove them in 

this case they serve no purpose. 

 Suppose the statement x:= y + z appears in a block and x is dead symbol that means it 

will never subsequently used. Then without changing the value of the basic block you can 

safely remove this statement. 

 

 



(c) Renaming temporary variables 

 A statement t:= b + c can be changed to u:= b + c where t is a temporary variable and u is 

a new temporary variable. All the instance of t can be replaced with the u without 

changing the basic block value. 

(d) Interchange of statement 

 Suppose a block has the following two adjacent statements: 

t1 : = b + c    

t2 : = x + y   

 These two statements can be interchanged without affecting the value of block when 

value of t1 does not affect the value of t2. 

2. Algebraic transformations: 

 In the algebraic transformation, we can change the set of expression into an algebraically 

equivalent set. Thus the expression x:= x + 0 or x:= x *1 can be eliminated from a basic 

block without changing the set of expression. 

 Constant folding is a class of related optimization. Here at compile time, we evaluate 

constant expressions and replace the constant expression by their values. Thus the 

expression 5*2.7 would be replaced by13.5. 

 Sometimes the unexpected common sub expression is generated by the relational 

operators like <=, >=, <, >, +, = etc. 

 Sometimes associative expression is applied to expose common sub expression without 

changing the basic block value. if the source code has the assignments 

a:= b + c   

e:= c +d +b   

The following intermediate code may be generated: 

a:= b + c   

 t:= c +d   

 e:= t + b   

 

 



CHAPTER 10 

Errors : 

 In this phase of compilation, all possible errors made by the user are detected and reported 

to the user in form of error messages. This process of locating errors and reporting it to user 

is called Error Handling process. 

Functions of Error handler 

 Detection 

 Reporting 

 Recovery 

Classification of Errors 

 

 

 

Lexical  PhaseError 

 During the lexical analysis phase this type of error can be detected. 

 Lexical error is a sequence of characters that does not match the pattern of any token. 

Lexical phase error is found during the execution of the program. 

 

 

 

 



Lexical phase error can be: 

o Spelling error. 

o Exceeding length of identifier or numeric constants. 

o Appearance of illegal characters. 

o To remove the character that should be present. 

o To replace a character with an incorrect character. 

o Transposition of two characters. 

Example: 

Void main()   

{   

    int x=10, y=20;   

char * a;   

  a= &x;   

 x= 1xab;   

} 

 In this code, 1xab is neither a number nor an identifier. So this code will show the lexical 

error. 

Error recovery: 

Panic Mode Recovery 

 In this method, successive characters from the input are removed one at a time until a 

designated set of synchronizing tokens is found. Synchronizing tokens are delimiters such 

as; or } 

 Advantage is that it is easy to implement and guarantees not to go to infinite loop 

 Disadvantage is that a considerable amount of input is skipped without checking it for 

additional error 

SyntaxPhase  Error 

 During the syntax analysis phase, this type of error appears. Syntax error is found during 

the execution of the program. 

 Some syntax error can be: 

o Error in structure 

o Missing operators 

o Unbalanced parenthesis 



 When an invalid calculation enters into a calculator then a syntax error can also occurs. 

This can be caused by entering several decimal points in one number or by opening 

brackets without closing them. 

For example 1: Using "=" when "==" is needed. 

        if (number=200)   

               count << "number is equal to 20";   

      else    

             count << "number is not equal to 200"   

The following warning message will be displayed by many compilers: 

 Syntax Warning: assignment operator used in if expression line 16 of program 

firstprog.cpp 

 In this code, if expression used the equal sign which is actually an assignment operator 

not the relational operator which tests for equality. 

 Due to the assignment operator, number is set to 200 and the expression number=200 are 

always true because the expression's value is actually 200. For this example the correct 

code would be: 

16  if (number==200)   

Example 2: Missing semicolon: 

int a = 5          // semicolon is missing   

Compiler message: 

ab.java:20: ';' expected   

int a = 5   

Example 3: Errors in expressions: 

x = (3 + 5;  // missing closing parenthesis ')'   

y = 3 + * 5;   // missing argument between '+' and '*'   

 

 

 

 

 

 

 

 



Error recovery: 

1. Panic Mode Recovery 
 In this method, successive characters from input are removed one at a time until a 

designated set of synchronizing tokens is found. Synchronizing tokens are deli-meters 

such as ; or } 

 Advantage is that its easy to implement and guarantees not to go to infinite loop 

 Disadvantage is that a considerable amount of input is skipped without checking it for 

additional errors 

2. Statement Mode recovery 

 In this method, when a parser encounters an error, it performs necessary correction on 

remaining input so that the rest of input statement allow the parser to parse ahead. 

 The correction can be deletion of extra semicolons, replacing comma by semicolon or 

inserting missing semicolon. 

 While performing correction, atmost care should be taken for not going in infinite 

loop. 

 Disadvantage is that it finds difficult to handle situations where actual error occured 

before point of detection. 

3. Error production 

 If user has knowledge of common errors that can be encountered then, these errors 

can be incorporated by augmenting the grammar with error productions that generate 

erroneous constructs. 

 If this is used then, during parsing appropriate error messages can be generated and 

parsing can be continued. 

 Disadvantage is that its difficult to maintain. 

4. Global Correction 

 The parser examines the whole program and tries to find out the closest match for it 

which is error free. 

 The closest match program has less number of insertions, deletions and changes of 

tokens to recover from erroneous input. 

 Due to high time and space complexity, this method is not implemented practically. 

 

 

 

 

 



Semantic Error 

 During the semantic analysis phase, this type of error appears. These types of error are 

detected at compile time. 

 Most of the compile time errors are scope and declaration error. For 

example: undeclared or multiple declared identifiers. Type mismatched is another 

compile time error. 

 The semantic error can arises using the wrong variable or using wrong operator or doing 

operation in wrong order. 

Some semantic error can be: 

o Incompatible types of operands 

o Undeclared variable 

o Not matching of actual argument with formal argument 

Example 1: Use of a non-initialized variable: 

int i;   

void f (int m)    

{   

      m=t;   

}   

In this code, t is undeclared that's why it shows the semantic error. 

Example 2: Type incompatibility: 

           int a = "hello";      // the types String and int are not compatible   

Example 3: Errors in expressions: 

String s = "...";   

int a = 5 - s;     // the - operator does not support arguments of type String   

 

Error recovery 

 If error “Undeclared Identifier” is encountered then, to recover from this a symbol table 

entry for corresponding identifier is made. 

 If data types of two operands are incompatible then, automatic type conversion is done by 

the compiler. 

 Attention reader! Don’t stop learning now. Get hold of all the important CS Theory 

concepts for SDE interviews with the CS Theory Course at a student-friendly price and 

become industry ready. 

https://practice.geeksforgeeks.org/courses/SDE-theory?vC=1


UNIT V 

 

CHAPTER 11:- Introduction To Code Optimization 

 The principal sources of optimization 

 Loop optimization 

 The dag representation of basic blocks 

CHAPTER 12:- Code Generation 

 Object programs 

 Problems in code generation 

 A machine model 

 A simple code generator 

 Register allocation and assignment 

 Code generation from DAG’s 

  

 Peephole optimization 

 

CHAPTER 11:- 

RINCIPAL SOURCES OF OPTIMIZATION 

  
 A transformation of a program is called local if it can be performed by looking only at the 

statements in a basic block; otherwise, it is called global. Many transformations can be 

performed at both the local and global levels. Local transformations are usually 

performed first. 

Function-Preserving Transformations 

  

 There are a number of ways in which a compiler can improve a program without 

changing the function it computes. 

 Function preserving transformations examples: 

 Common sub expression elimination 

 Copy propagation, 

 Dead-code elimination 

 Constant folding 

  



The other transformations come up primarily when global optimizations are performed. 

  

 Frequently, a program will include several calculations of the offset in an array. Some of 

the duplicate calculations cannot be avoided by the programmer because they lie below 

the level of detail accessible within the source language. 

  

Common Sub expressions elimination: 

  

 An occurrence of an expression E is called a common sub-expression if E 

was previously computed, and the values of variables in E have not changed 

since the previous computation. We can avoid recomputing the expression if 

we can use the previously computed value. 

  

For example 

  

t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t4: = 4*i 

t5: = n 

t6: = b [t4] +t5 

  

The above code can be optimized using the common sub-expression 

elimination as 

t1: = 4*i 

 t2: = a [t1] 

t3: = 4*j 

t5: = n 

t6: = b [t1] +t5 

  

 The common sub expression t4: =4*i is eliminated as its computation is 

already in t1 and the value of i is not been changed from definition to use.  

  

Copy Propagation: 

  

 Assignments of the form f : = g called copy statements, or copies for short. 

The idea behind the copy-propagation transformation is to use g for f, 

whenever possible after the copy statement f: = g. Copy propagation means 



use of one variable instead of another. This may not appear to be an 

improvement, but as we shall see it gives us an opportunity to eliminate x.  

 

 For example: 

x=Pi; 

  

A=x*r*r; 

  

The optimization using copy propagation can be done as follows: 

A=Pi*r*r; 

  

Here the variable x is eliminated 

  

Dead-Code Eliminations: 

  
 A variable is live at a point in a program if its value can be used subsequently; otherwise, 

it is dead at that point. A related idea is dead or useless code, statements that compute 

values that never get used. While the programmer is unlikely to introduce any dead code 

intentionally, it may appear as the result of previous transformations. 

  

Example: 

  

i=0; 

if(i=1) 

{ 

a=b+5; 

} 

  

Here, ‘if’ statement is dead code because this condition will never get 

satisfied. 

  

Constant folding: 

  
 Deducing at compile time that the value of an expression is a constant and using the 

constant instead is known as constant folding. One advantage of copy propagation is that 

it often turns the copy statement into dead code. 

 



For example, 

o a=3.14157/2 can be replaced by 

o a=1.570 there by eliminating a division operation. 

 

Loop Optimizations: 

  
 In loops, especially in the inner loops, programs tend to spend the bulk of their time. The 

running time of a program may be improved if the number of instructions in an inner loop 

is decreased, even if we increase the amount of code outside that loop. 

 

 Three techniques are important for loop optimization: 

 Ø     Code motion, which moves code outside a loop; 

 Ø     Induction-variable elimination, which we apply to replace variables from inner loop. 

 

 Ø     Reduction in strength, which replaces and expensive operation by a cheaper one, 

such as a multiplication by an addition. 

 

Fig. 5.2 Flow graph 

 

 

 



Code Motion: 

  
 An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the 

number of times a loop is executed (a loop-invariant computation) and places the 

expression before the loop. Note that the notion “before the loop” assumes the existence 

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant 

computation in the following while-statement: 

 

o while (i <= limit-2) /* statement does not change limit*/ 

 

 Code motion will result in the equivalent of 

 

o t= limit-2; 

o while (i<=t) /* statement does not change limit or t */ 

 

Induction Variables : 

  
 Loops are usually processed inside out. For example consider the loop around B3. Note 

that the values of j and t4 remain in lock-step; every time the value of j decreases by 1, 

that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 

induction variables. 

 

 When there are two or more induction variables in a loop, it may be possible to get rid of 

all but one, by the process of induction-variable elimination. For the inner loop around 

B3 in Fig.5.3 we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 

 

 However, we can illustrate reduction in strength and illustrate a part of the process of 

induction-variable elimination. Eventually j will be eliminated when the outer loop of 

B2- B5 is considered. 

 

Example: 

  
 As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is 

not changed elsewhere in the inner loop around B3, it follows that just after the statement 

j:=j-1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment 

t4:= 4*j by t4:= t4-4. The only problem is that t4 does not have a value when we enter 



block B3 for the first time. Since we must maintain the relationship t4=4*j on entry to the 

block B3, we place an initializations of t4 at the end of the block where j itself is 

initialized, shown by the dashed addition to block B1 in Fig.5.3. 

 

 The replacement of a multiplication by a subtraction will speed up the object code if 

multiplication takes more time than addition or subtraction, as is the case on many 

machines. 

  

Reduction In Strength: 

  
 Reduction in strength replaces expensive operations by equivalent cheaper ones on the 

target machine. Certain machine instructions are considerably cheaper than others and 

can often be used as special cases of more expensive operators. For example, x² is 

invariably cheaper to implement as x*x than as a call to an exponentiation routine. Fixed-

point multiplication or division by a power of two is cheaper to implement as a shift. 

Floating-point division by a constant can be implemented as multiplication by a constant, 

which may be cheaper. 

 

 

Fig. 5.3 B5 and B6 after common subexpression elimination 



Loop Optimization 

 Loop optimization is most valuable machine-independent optimization because program's 

inner loop takes bulk to time of a programmer. 

 If we decrease the number of instructions in an inner loop then the running time of a 

program may be improved even if we increase the amount of code outside that loop. 

 For loop optimization the following three techniques are important: 

1. Code motion 

2. Induction-variable elimination 

3. Strength reduction 

1.Code Motion: 

 Code motion is used to decrease the amount of code in loop. This transformation takes a 

statement or expression which can be moved outside the loop body without affecting the 

semantics of the program. 

For example 

In the while statement, the limit-2 equation is a loop invariant equation. 

while (i<=limit-2)     /*statement does not change limit*/   

After code motion the result is as follows:   

          a= limit-2;   

          while(i<=a)    /*statement does not change limit or a*/   

2.Induction-Variable Elimination 

 Induction variable elimination is used to replace variable from inner loop. 

 It can reduce the number of additions in a loop. It improves both code space and run time 

performance. 



 

 In this figure, we can replace the assignment t4:=4*j by t4:=t4-4. The only problem 

which will be arose that t4 does not have a value when we enter block B2 for the first 

time. So we place a relation t4=4*j on entry to the block B2. 

3.Reduction in Strength 

 Strength reduction is used to replace the expensive operation by the cheaper once on the 

target machine. 

 Addition of a constant is cheaper than a multiplication. So we can replace multiplication 

with an addition within the loop. 

 Multiplication is cheaper than exponentiation. So we can replace exponentiation with 

multiplication within the loop. 

Example: 

1. while (i<10)   

2.         {   

3. j= 3 * i+1;   

4. a[j]=a[j]-2;   

5. i=i+2;   

6.         }   

7. After strength reduction the code will be: 

8. s= 3*i+1;   

9.       while (i<10)   

10.        {   



11.             j=s;   

12.             a[j]= a[j]-2;   

13.             i=i+2;   

14.             s=s+6;   

15.        }   

In the above code, it is cheaper to compute s=s+6 than j=3 *i 

 

DAG representation for basic blocks 

A DAG for basic block is a directed acyclic graph with the following labels on nodes: 

1. The leaves of graph are labeled by unique identifier and that identifier can be variable 

names or constants. 

2. Interior nodes of the graph islabeled by an operator symbol. 

3. Nodes are also given a sequence of identifiers for labels to store the computed value. 

o DAGs are a type of data structure. It is used to implement transformations on basic 

blocks. 

o DAG provides a good way to determine the common sub-expression. 

o It gives a picture representation of how the value computed by the statement is used in 

subsequent statements. 

Algorithm for construction of DAG 

Input:It contains a basic block 

Output: It contains the following information: 

o Each node contains a label. For leaves, the label is an identifier. 

o Each node contains a list of attached identifiers to hold the computed values. 

Case (i) x:= y OP z   

 Case (ii) x:= OP y   

 Case (iii) x:= y   

Method: 

Step 1: 

 If y operand is undefined then create node(y). 

 If z operand is undefined then for case(i) create node(z). 

Step 2: 

 For case(i), create node(OP) whose right child is node(z) and left child is node(y). 

 For case(ii), check whether there is node(OP) with one child node(y). 



 For case(iii), node n will be node(y). 

Output: 

 For node(x) delete x from the list of identifiers. Append x to attached identifiers list for 

the node n found in step 2. Finally set node(x) to n. 

Example: 

Consider the following three address statement: 

1. S1:= 4 * i   

2. S2:= a[S1]   

3. S3:= 4 * i   

4. S4:= b[S3]     

5. S5:= s2 * S4   

6. S6:= prod + S5   

7. Prod:= s6   

8. S7:= i+1   

9. i := S7   

10. if i<= 20 goto (1)    

Stages in DAG Construction: 

 

 





 

 

Global data flow analysis 

 To efficiently optimize the code compiler collects all the information about the program 

and distribute this information to each block of the flow graph. This process is known as 

data-flow graph analysis. 

 Certain optimization can only be achieved by examining the entire program. It can't be 

achieve by examining just a portion of the program. 

 For this kind of optimization user defined chaining is one particular problem. 

 Here using the value of the variable, we try to find out that which definition of a variable 

is applicable in a statement. 



 Based on the local information a compiler can perform some optimizations. For example, 

consider the following code: 

x = a + b;   

x = 6 * 3   

o In this code, the first assignment of x is useless. The value computer for x is never 

used in the program. 

o At compile time the expression 6*3 will be computed, simplifying the second 

assignment statement to x = 18; 

o Some optimization needs more global information. For example, consider the 

following code: 

 a = 1;   

 b = 2;   

 c = 3;   

 if (....) x = a + 5;   

 else x = b + 4;   

 c = x + 1;   

In this code, at line 3 the initial assignment is useless and x +1 expression can be simplified as 7. 

 But it is less obvious that how a compiler can discover these facts by looking only at one 

or two consecutive statements. A more global analysis is required so that the compiler 

knows the following things at each point in the program: 

o Which variables are guaranteed to have constant values 

o Which variables will be used before being redefined 

 Data flow analysis is used to discover this kind of property. The data flow analysis can be 

performed on the program's control flow graph (CFG). 

 The control flow graph of a program is used to determine those parts of a program to 

which a particular value assigned to a variable might propagate. 

 

 

 

 

 



CHAPTER  12 

Object programs 

 Let assume that, you have a c program, then you give the C program to compiler and 

compiler will produce the output in assembly code.Now, that assembly language code will 

give to the assembler and assembler is going to produce you some code. That is known 

as Object Code. 

 

 But, when you compile a program, then you are not going to use both compiler and 

assembler.You just take the program and give it to the compiler and compiler will give you 

the directly executable code. The compiler is actually combined inside the assembler along 

with loader and linker.So all the module kept together in the compiler software itself. So 

when you calling gcc, you are actually not just calling the compiler, you are calling the 

compiler, then assembler, then linker and loader. 

 

 Once you call the compiler, then your object code is going to present in Hard-disk. This 

object code contains various part – 



 
 

 

 

Problems In Code Generation 

 

The following issues arise during the code generation phase: 

1.   Input to code generator 

2.   Target program 

3.   Memory management 

4.   Instruction selection 

5.   Register allocation 

6.   Evaluation order 

  

1. Input to code generator: 

 

 The input to the code generation consists of the intermediate representation of the 

source program produced by front end , together with information in the symbol 

table to determine run-time addresses of the data objects denoted by the names in 

the intermediate representation. 

 Intermediate representation can be : 

 

a.    Linear representation such as postfix notation 



b.   Three address representation such as quadruples 

c.   Virtual machine representation such as stack machine code 

d.   Graphical representations such as syntax trees and dags. 

e.     • Prior to code generation, the front end must be scanned, parsed and 

translated into intermediate representation along with necessary type 

checking. Therefore, input to code generation is assumed to be error-free. 

 

2. Target program: 

 

 The output of the code generator is the target program. The output may be : a. 

Absolute machine language 

 

 It can be placed in a fixed memory location and can be executed immediately- b. 

Relocatable machine language 

 .  

 It allows subprograms to be compiled separately.c. Assembly language 

 Code generation is made easier. 

 

3. Memory management: 

 Names in the source program are mapped to addresses of data objects in run-time 

memory by the front end and code generator. 

 

 It makes use of symbol table, that is, a name in a three-address statement refers to a 

symbol-table entry for the name. 

 Labels in three-address statements have to be converted to addresses of instructions. 

For example, 

 

 j:gotoigenerates jump instruction as follows: 

 

 if i < j, a backward jump instruction with target address equal to location of code for 

quadruple i is generated. 

 



 if i > j, the jump is forward. We must store on a list for quadruple i the location of the 

first machine instruction generated for quadruple j. When i is processed, the machine 

locations for all instructions that forward jumps to i are filled. 

 

 

4. Instruction selection: 

 

 The instructions of target machine should be complete and uniform. 

 Instruction speeds and machine idioms are important factors when efficiency of target 

program 

 is considered. 

 The quality of the generated code is determined by its speed and size. 

 The former statement can be translated into the latter statement as shown below: 

 

 a:=b+c 

 d:=a+e (a) 

 

 MOV b,R0 

 ADD c,R0 

 MOV R0,a (b) 

 MOV a,R0 

 ADD e,R0 

 MOV R0,d 

  

5. Register allocation 
o Instructions involving register operands are shorter and faster than those involving 

operands in memory. The use of registers is subdivided into two subproblems : 

 

o Register allocation - the set of variables that will reside in registers at a point in 

the program is selected. 

o Register assignment - the specific register that a value picked• 

o Certain machine requires even-odd register pairs for some operands and results. 

For example , consider the division instruction of the form :D x, y 

 

 where, x - dividend even register in even/odd register pair y-divisor 

 even register holds the remainder 

 odd register holds the quotient 

  

 

 



6. Evaluation order 

 

 The order in which the computations are performed can affect the efficiency of the 

target code. 

 

 Some computation orders require fewer registers to hold intermediate results than 

others. 

  

Machine model 

o The target computer is a type of byte-addressable machine. It has 4 bytes to a word. 

o The target machine has n general purpose registers, R0, R1,...., Rn-1. It also has two-

address instructions of the form: 

op source, destination   

Where, op is used as an op-code and source and destination are used as a data 

field. 

 It has the following op-codes: 

  ADD (add source to destination) 

  SUB (subtract source from destination) 

  MOV (move source to destination) 

 The source and destination of an instruction can be specified by the combination of 

registers and memory location with address modes. 

MODE FORM ADDRESS EXAMPLE ADDED 

COST 

absolute M M Add R0, R1 1 

register R R Add temp, R1 0 

indexed c(R) C+ contents(R) ADD 100 (R2), 

R1 

1 

indirect 

register 

*R contents(R) ADD * 100 0 



indirect 

indexed 

*c(R) contents(c+ 

contents(R)) 

(R2), R1 1 

literal #c c ADD #3, R1 1 

o Here, cost 1 means that it occupies only one word of memory. 

o Each instruction has a cost of 1 plus added costs for the source and destination. 

o Instruction cost = 1 + cost is used for source and destination mode. 

Example: 

1. Move register to memory R0 → M 

2. Indirect indexed mode: 

MOV * 4(R0), M   

     cost = 1+1+1   (since one word for memory location M, one word   

for result of *4(R0) and one for instruction)   

3. Literal Mode: 

MOV #1, R0   

cost = 1+1+1 = 3   (one word for constant 1 and one for instruction)   

 

 A Simple Code Generator 

 Code generator is used to produce the target code for three-address statements. It uses 

registers to store the operands of the three address statement. 

Example: 

 Consider the three address statement x:= y + z. It can have the following sequence of 

codes: 

MOV x, R0 

ADD y, R0 



 

Register and Address Descriptors: 

o A register descriptor contains the track of what is currently in each register. The register 

descriptors show that all the registers are initially empty. 

o An address descriptor is used to store the location where current value of the name can be 

found at run time. 

A code-generation algorithm: 

The algorithm takes a sequence of three-address statements as input. For each three 

address statement of the form a:= b op c perform the various actions. These are as 

follows: 

1. Invoke a function getreg to find out the location L where the result of computation b op c 

should be stored. 

2. Consult the address description for y to determine y'. If the value of y currently in 

memory and register both then prefer the register y' . If the value of y is not already in L 

then generate the instruction MOV y' , L to place a copy of y in L. 

3. Generate the instruction OP z' , L where z' is used to show the current location of z. if z 

is in both then prefer a register to a memory location. Update the address descriptor of x 

to indicate that x is in location L. If x is in L then update its descriptor and remove x from 

all other descriptor. 

4. If the current value of y or z have no next uses or not live on exit from the block or in 

register then alter the register descriptor to indicate that after execution of x : = y op z 

those register will no longer contain y or z. 

Generating Code for Assignment Statements: 

 The assignment statement d:= (a-b) + (a-c) + (a-c) can be translated into the following 

sequence of three address code: 

t:= a-b   

u:= a-c   

v:= t +u    

 d:= v+u   

Code sequence for the example is as follows: 



Statement Code Generated Register descriptor 

Register empty 

Address descriptor 

t:= a - b MOV a, R0 

SUB b, R0 

R0 contains t t in R0 

u:= a - c MOV a, R1 

SUB c, R1 

R0 contains t 

R1 contains u 

t in R0 

u in R1 

v:= t + u ADD R1, R0 R0 contains v 

R1 contains u 

u in R1 

v in R1 

d:= v + u ADD R1, R0 

MOV R0, d 

R0 contains d d in R0 

d in R0 and memory 

 

 

REGISTER ALLOCATION AND ASSIGNMENT 

  

Local register allocation 

 

 Register allocation is only within a basic block. It follows top-down approach. 

 Assign registers to the most heavily used variables 

Traverse the block 

   

 Count uses 

 

 Use count as a priority function 

 

 Assign registers to higher priority variables first 

 

Advantage 

 Heavily used values reside in registers 

  

Disadvantage 

 Does not consider non-uniform distribution of uses 

  



Need of global register allocation 

   

 Local allocation does not take into account that some instructions (e.g. those in loops) 

execute more frequently. It forces us to store/load at basic block endpoints since each 

block has no knowledge of the context of others. 

  

 To find out the live range(s) of each variable and the area(s) where the variable is 

used/defined global allocation is needed. Cost of spilling will depend on frequencies and 

locations of uses. 

  

 Register allocation depends on: 

 Size of live range 

 Number of uses/definitions 

 Frequency of execution 

 Number of loads/stores needed. 

 Cost of loads/stores needed. 

  

Register allocation by graph coloring 

 Global register allocation can be seen as a graph coloring problem. 

Basic idea: 

 Identify the live range of each variable 

 Build an interference graph that represents conflicts between live ranges (two nodes are 

connected if the variables they represent are live at the same moment) 

 Try to assign as many colors to the nodes of the graph as there are registers so that two 

neighbors have different colors 

 



  

Fig 4.3 Flow graph of an inner loop 

 

 

Fig 4.4 Code sequence using global register assignment 

 



 

Register allocation And Assignment 

 Register can be accessed faster than memory. The instructions involving operands in 

register are shorter and faster than those involving in memory operand. 

The following sub problems arise when we use registers: 

 Register allocation: In register allocation, we select the set of variables that will reside 

in register. 

 Register assignment: In Register assignment, we pick the register that contains variable.  

  

Code Generation From Directed Acyclic Graph 

 Directed Acyclic Graph (DAG) is a tool that depicts the structure of basic blocks, helps 

to see the flow of values flowing among the basic blocks, and offers optimization too. 

DAG provides easy transformation on basic blocks. DAG can be understood here: 

 Leaf nodes represent identifiers, names or constants. 

 Interior nodes represent operators. 

 Interior nodes also represent the results of expressions or the identifiers/name where the 

values are to be stored or assigned. 

Example: 

t0= a + b 

t1= t0+ c 

d = t0+ t1 

 

[t0 = a + b] 

 

[t1 = t0 + c] 

 

[d = t0 + t1] 



 

Peephole Optimization 

 This optimization technique works locally on the source code to transform it into an 

optimized code. By locally, we mean a small portion of the code block at hand. These 

methods can be applied on intermediate codes as well as on target codes. A bunch of 

statements is analyzed and are checked for the following possible optimization: 

Redundant instruction elimination 

At source code level, the following can be done by the user: 

intadd_ten(int x) 

{ 

int y, z; 

   y =10; 

   z = x + y; 

return z; 

} 

intadd_ten(int x) 

{ 

int y; 

   y =10; 

   y = x + y; 

return y; 

} 

intadd_ten(int x) 

{ 

int y =10; 

return x + y; 

} 

 

 

intadd_ten(int x) 

{ 

return x +10; 

} 

 

 

 

 At compilation level, the compiler searches for instructions redundant in nature. 

Multiple loading and storing of instructions may carry the same meaning even if some 

of them are removed. For example: 

 MOV x, R0 

 MOV R0, R1 

 We can delete the first instruction and re-write the sentence as: 

MOV x, R1 

Unreachable code 

 Unreachable code is a part of the program code that is never accessed because of 

programming constructs. Programmers may have accidently written a piece of code that 

can never be reached. 

Example: 

voidadd_ten(int x) 

{ 

return x +10; 

printf(“valueof x is%d”, x); 

} 



 In this code segment, the printf statement will never be executed as the program control 

returns back before it can execute, hence printf can be removed. 

Flow of control optimization 

 There are instances in a code where the program control jumps back and forth without 

performing any significant task. These jumps can be removed. Consider the following 

chunk of code: 

...   

MOV R1, R2 

GOTO L1 

... 

L1 :   GOTO L2 

L2 :   INC R1 

 In this code,label L1 can be removed as it passes the control to L2. So instead of 

jumping to L1 and then to L2, the control can directly reach L2, as shown below: 

...   

MOV R1, R2 

GOTO L2 

... 

L2 :   INC R1 

Algebraic expression simplification 

 There are occasions where algebraic expressions can be made simple. For example, the 

expression a = a + 0 can be replaced by a itself and the expression a = a + 1 can simply 

be replaced by INC a. 

Strength reduction 

 There are operations that consume more time and space. Their ‘strength’ can be reduced 

by replacing them with other operations that consume less time and space, but produce 

the same result. 

 For example, x * 2 can be replaced by x << 1, which involves only one left shift. 

Though the output of a * a and a2 is same, a2 is much more efficient to implement. 
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